256 research outputs found
Plasma cortisol variations in dairy cows after some usual or unusual manipulations
The increase of blood cortisol is a common consequence of the acute stress; this has generally positive effects, despite not completely understood (Sapolsky et al. 2000). However, at least in human beings under chronic stress, the hypothalamic-pituitary-adrenal system – responsible of cortisol release – is deregulated, resulting in pathophysiological changes, which may develop into various types of disorders (Tafet and Bernardini, 2003)
Life cycle environmental analysis of a hydrogen-based energy storage system for remote applications
Energy storage systems are required to address the fluctuating behaviour of variable renewable energy sources. The environmental sustainability of energy storage technologies should be carefully assessed, together with their techno-economic feasibility. In this work, an environmental analysis of a renewable hydrogen-based energy storage system has been performed, making use of input parameters made available in the framework of the European REMOTE project. The analysis is applied to the case study of the Froan islands (Norway), which are representative of many other insular microgrid sites in northern Europe. The REMOTE solution is compared with other scenarios based on fossil fuels and submarine connections to the mainland grid. The highest climate impacts are found in the diesel-based configuration (1,090.9 kgCO2eq/MWh), followed by the REMOTE system (148.2 kgCO2eq/MWh) and by the sea cable scenario (113.7 kgCO2eq/MWh). However, the latter is biased by the very low carbon intensity of the Norwegian electricity. A sensitivity analysis is then performed on the length of the sea cable and on the CO2 emission intensity of electricity, showing that local conditions have a strong impact on the results. The REMOTE system is also found to be the most cost-effective solution to provide electricity to the insular community. The in-depth and comparative (with reference to possible alternatives) assessment of the renewable hydrogen-based system aims to provide a comprehensive overview about the effectiveness and sustainability of these innovative solutions as a support for off-grid remote areas
Recommended from our members
The Impact of Intramammary Escherichia coli Challenge on Liver and Mammary Transcriptome and Cross-Talk in Dairy Cows during Early Lactation Using RNAseq
Our objective was to identify the biological response and the cross-talk between liver and mammary tissue after intramammary infection (IMI) with Escherichia coli (E. coli) using RNAseq technology. Sixteen cows were inoculated with live E. coli into one mammary quarter at ~4–6 weeks in lactation. For all cows, biopsies were performed at -144, 12 and 24 h relative to IMI in liver and at 24 h post-IMI in infected and non-infected (control) mammary quarters. For a subset of cows (n = 6), RNA was extracted from both liver and mammary tissue and sequenced using a 100 bp paired-end approach. Ingenuity Pathway Analysis and the Dynamic Impact Approach analysis of differentially expressed genes (overall effect False Discovery Rate≤0.05) indicated that IMI induced an overall activation of inflammation at 12 h post-IMI and a strong inhibition of metabolism, especially related to lipid, glucose, and xenobiotics at 24 h post-IMI in liver. The data indicated in mammary tissue an overall induction of inflammatory response with little effect on metabolism at 24 h post-IMI. We identified a large number of up-stream regulators potentially involved in the response to IMI in both tissues but a relatively small core network of transcription factors controlling the response to IMI for liver whereas a large network in mammary tissue. Transcriptomic results in liver and mammary tissue were supported by changes in inflammatory and metabolic mediators in blood and milk. The analysis of potential cross-talk between the two tissues during IMI uncovered a large communication from the mammary tissue to the liver to coordinate the inflammatory response but a relatively small communication from the liver to the mammary tissue. Our results indicate a strong induction of the inflammatory response in mammary tissue and impairment of liver metabolism 24h post-IMI partly driven by the signaling from infected mammary tissue
Monensin controlled-release capsule administered in late-pregnancy differentially affects rumination patterns, metabolic status, and cheese-making properties of the milk in primiparous and multiparous cows
The increased resistance to disease observed after monensin treatment could reflect a reduction of inflammation and oxidative stress. We hypothesised that if monensin supplementation was given before calving, it would help in controlling inflammation, reduce the susceptibility to disease and increase the performance. Fourteen pregnant heifers (PR) and 24 multiparous cows (ML) were randomly assigned to a treated group (Mon) or a control group (Ctr). The Mon group received 32.4 g of monensin in a controlled-release capsule 21 days before calving (expected release rate, 335 mg/d for 95 days). Their health status, rumination activity, and plasma parameters were monitored from –28 to 56 days from calving. The milk yield (MY), milk composition, and cheese-making properties were also monitored. Rumen samples were collected at 30 days from calving to assess the volatile fatty acids composition and investigate immunological parameters. After calving, the Mon group had fewer clinical diseases, an increased rumination time, and a higher MY. Monensin reduced the infiltration of both T and B cells in rumen fluid. In ML, the Mon group had lower levels of β-hydroxybutyrate in the early postpartum period and a lower level of total reactive oxygen species. Of PR, the Mon group had a tendency for lower levels of nonesterified fatty acids, higher levels of ceruloplasmin after the first month of lactation, a tendency for lower levels of paraoxonase, higher levels of γ-glutamyl transferase and higher levels of total reactive oxygen species. Monensin treatment decreased the cheese-making properties in the milk of PR.HighlightsMonensin improved the performance of all the animals and decreased the disease incidence in all of them.Monensin heightened the inflammatory and oxidative stress status and reduced the cheese-making properties in pregnant heifers.Although different effects were seen in cows with different parity, dairy cows generally beneficed of monensin administration. Monensin improved the performance of all the animals and decreased the disease incidence in all of them. Monensin heightened the inflammatory and oxidative stress status and reduced the cheese-making properties in pregnant heifers. Although different effects were seen in cows with different parity, dairy cows generally beneficed of monensin administration
Blood immunometabolic indices and polymorphonuclear neutrophil function in peripartum dairy cows are altered by level of dietary energy prepartum
Cows experience some degree of negative energy balance and immunosuppression around parturition, making them vulnerable to metabolic and infectious diseases. The effect of prepartum feeding of diets to meet (control, 1.34 Mcal/kg of dry matter) or exceed (overfed, 1.62 Mcal/kg of dry matter) dietary energy requirements was evaluated during the entire dry period (∼45 d) on blood polymorphonuclear neutrophil function, blood metabolic and inflammatory indices, and milk production in Holstein cows. By design, dry matter intake in the overfed group (n=9) exceeded energy requirements during the prepartum period (-4 to -1 wk relative to parturition), resulting in greater energy balance when compared with the control group (n=10). Overfed cows were in more negative energy balance during wk 1 after calving than controls. No differences were observed in dry matter intake, milk yield, and milk composition between diets. Although nonesterified fatty acid concentration pre- (0.138 mEq/L) and postpartum (0.421 mEq/L) was not different between diets, blood insulin concentration was greater in overfed cows prepartum (16.7 μIU/mL) compared with controls pre- and postpartum (∼3.25 μIU/mL). Among metabolic indicators, concentrations of urea (4.63 vs. 6.38 mmol/L), creatinine (100 vs. 118 μmol/L), and triacylglycerol (4.0 vs. 8.57 mg/dL) in overfed cows were lower prepartum than controls. Glucose was greater pre- (4.24 vs. 4.00 mmol/L) and postpartum (3.49 vs. 3.30 mmol/L) compared with control cows. Among liver function indicators, the concentration of bilirubin increased by 2 to 6 fold postpartum in control and overfed cows. Phagocytosis capacity of polymorphonuclear neutrophils was lower prepartum in overfed cows (32.7% vs. 46.5%); phagocytosis in the control group remained constant postpartum (50%) but it increased at d 7 in the overfed group to levels similar to controls (48.4%). Regardless of prepartum diet, parturition was characterized by an increase in nonesterified fatty acid and liver triacylglycerol, as well as blood indices of inflammation (ceruloplasmin and haptoglobin), oxidative stress (reactive oxygen metabolites), and liver injury (glutamic oxaloacetic transaminase). Concentrations of the antioxidant and anti-inflammatory compounds vitamin A, vitamin E, and β-carotene decreased after calving. For vitamin A, the decrease was observed in overfed cows (47.3 vs. 27.5 μg/100 mL). Overall, overfeeding energy and higher energy status prepartum led to the surge of insulin and had a transient effect on metabolism postpartum
Gene network and pathway analysis of bovine mammary tissue challenged with Streptococcus uberis reveals induction of cell proliferation and inhibition of PPARγ signaling as potential mechanism for the negative relationships between immune response and lipid metabolism
<p>Abstract</p> <p>Background</p> <p>Information generated via microarrays might uncover interactions between the mammary gland and <it>Streptococcus uberis </it>(<b><it>S. uberis</it></b>) that could help identify control measures for the prevention and spread of <it>S. uberis </it>mastitis, as well as improve overall animal health and welfare, and decrease economic losses to dairy farmers. The main objective of this study was to determine the most affected gene networks and pathways in mammary tissue in response to an intramammary infection (<b>IMI</b>) with <it>S. uberis </it>and relate these with other physiological measurements associated with immune and/or metabolic responses to mastitis challenge with <it>S. uberis </it>O140J.</p> <p>Results</p> <p><it>Streptococcus uberis </it>IMI resulted in 2,102 (1,939 annotated) differentially expressed genes (<b>DEG</b>). Within this set of DEG, we uncovered 20 significantly enriched canonical pathways (with 20 to 61 genes each), the majority of which were signaling pathways. Among the most inhibited were <it>LXR/RXR Signaling </it>and <it>PPARα/RXRα Signaling</it>. Pathways activated by IMI were <it>IL-10 Signaling </it>and <it>IL-6 Signaling </it>which likely reflected counter mechanisms of mammary tissue to respond to infection. Of the 2,102 DEG, 1,082 were up-regulated during IMI and were primarily involved with the immune response, e.g., <it>IL6</it>, <it>TNF</it>, <it>IL8, IL10, SELL, LYZ</it>, and <it>SAA3</it>. Genes down-regulated (1,020) included those associated with milk fat synthesis, e.g., <it>LPIN1, LPL, CD36</it>, and <it>BTN1A1</it>. Network analysis of DEG indicated that <it>TNF </it>had positive relationships with genes involved with immune system function (e.g., <it>CD14, IL8, IL1B</it>, and <it>TLR2</it>) and negative relationships with genes involved with lipid metabolism (e.g., <it>GPAM</it>, <it>SCD</it>, <it>FABP4</it>, <it>CD36</it>, and <it>LPL</it>) and antioxidant activity (<it>SOD1</it>).</p> <p>Conclusion</p> <p>Results provided novel information into the early signaling and metabolic pathways in mammary tissue that are associated with the innate immune response to <it>S. uberis </it>infection. Our study indicated that IMI challenge with <it>S. uberis </it>(strain O140J) elicited a strong transcriptomic response, leading to potent activation of pro-inflammatory pathways that were associated with a marked inhibition of lipid synthesis, stress-activated kinase signaling cascades, and PPAR signaling (most likely PPARγ). This latter effect may provide a mechanistic explanation for the inverse relationship between immune response and milk fat synthesis.</p
Functional and gene network analyses of transcriptional signatures characterizing pre-weaned bovine mammary parenchyma or fat pad uncovered novel inter-tissue signaling networks during development
<p>Abstract</p> <p>Background</p> <p>The neonatal bovine mammary fat pad (<b>MFP</b>) surrounding the mammary parenchyma (<b>PAR</b>) is thought to exert proliferative effects on the PAR through secretion of local modulators of growth induced by systemic hormones. We used bioinformatics to characterize transcriptomics differences between PAR and MFP from ~65 d old Holstein heifers. Data were mined to uncover potential crosstalk through the analyses of signaling molecules preferentially expressed in one tissue relative to the other.</p> <p>Results</p> <p>Over 9,000 differentially expressed genes (<b>DEG</b>; False discovery rate ≤ 0.05) were found of which 1,478 had a ≥1.5-fold difference between PAR and MFP. Within the DEG highly-expressed in PAR vs. MFP (n = 736) we noted significant enrichment of functions related to cell cycle, structural organization, signaling, and DNA/RNA metabolism. Only actin cytoskeletal signaling was significant among canonical pathways. DEG more highly-expressed in MFP vs. PAR (n = 742) belong to lipid metabolism, signaling, cell movement, and immune-related functions. Canonical pathways associated with metabolism and signaling, particularly immune- and metabolism-related were significantly-enriched. Network analysis uncovered a central role of <it>MYC</it>, <it>TP53</it>, and <it>CTNNB1 </it>in controlling expression of DEG highly-expressed in PAR vs. MFP. Similar analysis suggested a central role for <it>PPARG</it>, <it>KLF2</it>, <it>EGR2</it>, and <it>EPAS1 </it>in regulating expression of more highly-expressed DEG in MFP vs. PAR. Gene network analyses revealed putative inter-tissue crosstalk between cytokines and growth factors preferentially expressed in one tissue (e.g., <it>ANGPTL1</it>, <it>SPP1</it>, <it>IL1B </it>in PAR vs. MFP; <it>ADIPOQ</it>, <it>IL13</it>, <it>FGF2</it>, <it>LEP </it>in MFP vs. PAR) with DEG preferentially expressed in the other tissue, particularly transcription factors or pathways (e.g., <it>MYC</it>, <it>TP53</it>, and actin cytoskeletal signaling in PAR vs. MFP; <it>PPARG </it>and LXR/RXR Signaling in MFP vs. PAR).</p> <p>Conclusions</p> <p>Functional analyses underscored a reciprocal influence in determining the biological features of MFP and PAR during neonatal development. This was exemplified by the potential effect that the signaling molecules (cytokines, growth factors) released preferentially (i.e., more highly-expressed) by PAR or MFP could have on molecular functions or signaling pathways enriched in the MFP or PAR. These bidirectional interactions might be required to coordinate mammary tissue development under normal circumstances or in response to nutrition.</p
RNA-Seq transcriptomics and pathway analyses reveal potential regulatory genes and molecular mechanisms in high- and low-residual feed intake in Nordic dairy cattle
BACKGROUND: The selective breeding of cattle with high-feed efficiencies (FE) is an important goal of beef and dairy cattle producers. Global gene expression patterns in relevant tissues can be used to study the functions of genes that are potentially involved in regulating FE. In the present study, high-throughput RNA sequencing data of liver biopsies from 19 dairy cows were used to identify differentially expressed genes (DEGs) between high- and low-FE groups of cows (based on Residual Feed Intake or RFI). Subsequently, a profile of the pathways connecting the DEGs to FE was generated, and a list of candidate genes and biomarkers was derived for their potential inclusion in breeding programmes to improve FE. RESULTS: The bovine RNA-Seq gene expression data from the liver was analysed to identify DEGs and, subsequently, identify the molecular mechanisms, pathways and possible candidate biomarkers of feed efficiency. On average, 57 million reads (short reads or short mRNA sequences < ~200 bases) were sequenced, 52 million reads were mapped, and 24,616 known transcripts were quantified according to the bovine reference genome. A comparison of the high- and low-RFI groups revealed 70 and 19 significantly DEGs in Holstein and Jersey cows, respectively. The interaction analysis (high vs. low RFI x control vs. high concentrate diet) showed no interaction effects in the Holstein cows, while two genes showed interaction effects in the Jersey cows. The analyses showed that DEGs act through certain pathways to affect or regulate FE, including steroid hormone biosynthesis, retinol metabolism, starch and sucrose metabolism, ether lipid metabolism, arachidonic acid metabolism and drug metabolism cytochrome P450. CONCLUSION: We used RNA-Seq-based liver transcriptomic profiling of high- and low-RFI dairy cows in two breeds and identified significantly DEGs, their molecular mechanisms, their interactions with other genes and functional enrichments of different molecular pathways. The DEGs that were identified were the CYP’s and GIMAP genes for the Holstein and Jersey cows, respectively, which are related to the primary immunodeficiency pathway and play a major role in feed utilization and the metabolism of lipids, sugars and proteins. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-017-3622-9) contains supplementary material, which is available to authorized users
- …