84 research outputs found
Effects of low doses of dexamethasone on productive traits and meat quality of veal calves
An experimental administration of dexamethasone was carried out on 15 veal calves in order to assess the rôle of low doses of exogenous glucocorticoids on productive traits and meat quality. Three groups, of five veal calves each, were formed : one group received oral dexamethasone (0.4 mg per calf per day for 25 days), another intramuscular (i. m.) dexamethasone (2 mg at days 14 and 21), and the third was the control. Calves were slaughtered at 165 days of age (day 31). Food conversion ratio (FCR), hot dressing percentage (HDP), chilled dressing percentage (CDP) and shrinkage were determined. From all carcasses, samples of m. longissimus thoracis (between the 8th and 10th rib) were taken in order to evaluate the chemical composition and some organoleptic characteristics : meat colour, water-holding capacity and tenderness. The animals treated with oral dexamethasone showed the lowest daily weight gain (P < 0.05) and the poorest FCR (P < 0.05). Hot dressing percentage, cold dressing percentage and shrinkage were not affected by the oral treatment. The i. m. injections of dexamethasone did not influence the overall performance.
Muscle chemical composition and pH were not affected by the treatments; the meat of calves treated with oral dexamethasone was significantly lighter (P < 0.05) and tended to be paler, while i. m. treatment induced intermediate characteristics. The shear force of the meat was rather low. Shear force of cooked meat from animals treated with dexamethasone (both oral and i. m.) was significantly lower than the control (P < 0.05). Treatment with dexamethasone i. m. induced a decrease in water-holding capacity; the oral treatment had no effect on this parameter
Optimal quantum control in nanostructures: Theory and application to generic three-level system
Coherent carrier control in quantum nanostructures is studied within the
framework of Optimal Control. We develop a general solution scheme for the
optimization of an external control (e.g., lasers pulses), which allows to
channel the system's wavefunction between two given states in its most
efficient way; physically motivated constraints, such as limited laser
resources or population suppression of certain states, can be accounted for
through a general cost functional. Using a generic three-level scheme for the
quantum system, we demonstrate the applicability of our approach and identify
the pertinent calculation and convergence parameters.Comment: 7 pages; to appear in Phys. Rev.
Size-dependent decoherence of excitonic states in semiconductor microcrystallites
The size-dependent decoherence of the exciton states resulting from the
spontaneous emission is investigated in a semiconductor spherical
microcrystallite under condition . In general, the
larger size of the microcrystallite corresponds to the shorter coherence time.
If the initial state is a superposition of two different excitonic coherent
states, the coherence time depends on both the overlap of two excitonic
coherent states and the size of the microcrystallite. When the system with
fixed size is initially in the even or odd coherent states, the larger average
number of the excitons corresponds to the faster decoherence. When the average
number of the excitons is given, the bigger size of the microcrystallite
corresponds to the faster decoherence. The decoherence of the exciton states
for the materials GaAs and CdS is numerically studied by our theoretical
analysis.Comment: 4 pages, two figure
Coulomb-enhanced dynamic localization and Bell state generation in coupled quantum dots
We investigate the dynamics of two interacting electrons in coupled quantum
dots driven by an AC field. We find that the two electrons can be trapped in
one of the dots by the AC field, in spite of the strong Coulomb repulsion. In
particular, we find that the interaction may enhance the localization effect.
We also demonstrate the field excitation procedure to generate the maximally
entangled Bell states. The generation time is determined by both analytic and
numerical solutions of the time dependent Schrodinger equation.Comment: 12 pages, 5 figure
Novel antiviral activity of PAD inhibitors against human beta-coronaviruses HCoV-OC43 and SARS-CoV-2
Quantum Entanglement of Excitons in Coupled Quantum Dots
Optically-controlled exciton dynamics in coupled quantum dots is studied. We
show that the maximally entangled Bell states and Greenberger-Horne-Zeilinger
(GHZ) states can be robustly generated by manipulating the system parameters to
be at the avoided crossings in the eigenenergy spectrum. The analysis of
population transfer is systematically carried out using a dressed-state
picture. In addition to the quantum dot configuration that have been discussed
by Quiroga and Johnson [Phys. Rev. Lett. \QTR{bf}{83}, 2270 (1999)], we show
that the GHZ states also may be produced in a ray of three quantum dots with a
shorter generation time.Comment: 16 pages, 7 figures, to appear in Phys. Rev.
Quantum-Information Processing with Semiconductor Macroatoms
An all optical implementation of quantum information processing with
semiconductor macroatoms is proposed. Our quantum hardware consists of an array
of semiconductor quantum dots and the computational degrees of freedom are
energy-selected interband optical transitions. The proposed quantum-computing
strategy exploits exciton-exciton interactions driven by ultrafast sequences of
multi-color laser pulses. Contrary to existing proposals based on charge
excitations, the present all-optical implementation does not require the
application of time-dependent electric fields, thus allowing for a
sub-picosecond, i.e. decoherence-free, operation time-scale in realistic
state-of-the-art semiconductor nanostructures.Comment: 11 pages, 5 figures, to be published in Phys. Rev. Lett., significant
changes in the text and new simulations (figure 3
- …