54 research outputs found

    Dynamic Linear Discriminant Analysis in High Dimensional Space

    Get PDF
    High-dimensional data that evolve dynamically feature predominantly in the modern data era. As a partial response to this, recent years have seen increasing emphasis to address the dimensionality challenge. However, the non-static nature of these datasets is largely ignored. This paper addresses both challenges by proposing a novel yet simple dynamic linear programming discriminant (DLPD) rule for binary classification. Different from the usual static linear discriminant analysis, the new method is able to capture the changing distributions of the underlying populations by modeling their means and covariances as smooth functions of covariates of interest. Under an approximate sparse condition, we show that the conditional misclassification rate of the DLPD rule converges to the Bayes risk in probability uniformly over the range of the variables used for modeling the dynamics, when the dimensionality is allowed to grow exponentially with the sample size. The minimax lower bound of the estimation of the Bayes risk is also established, implying that the misclassification rate of our proposed rule is minimax-rate optimal. The promising performance of the DLPD rule is illustrated via extensive simulation studies and the analysis of a breast cancer dataset.Comment: 34 pages; 3 figure

    MARS: A second-order reduction algorithm for high-dimensional sparse precision matrices estimation

    Full text link
    Estimation of the precision matrix (or inverse covariance matrix) is of great importance in statistical data analysis. However, as the number of parameters scales quadratically with the dimension p, computation becomes very challenging when p is large. In this paper, we propose an adaptive sieving reduction algorithm to generate a solution path for the estimation of precision matrices under the 1\ell_1 penalized D-trace loss, with each subproblem being solved by a second-order algorithm. In each iteration of our algorithm, we are able to greatly reduce the number of variables in the problem based on the Karush-Kuhn-Tucker (KKT) conditions and the sparse structure of the estimated precision matrix in the previous iteration. As a result, our algorithm is capable of handling datasets with very high dimensions that may go beyond the capacity of the existing methods. Moreover, for the sub-problem in each iteration, other than solving the primal problem directly, we develop a semismooth Newton augmented Lagrangian algorithm with global linear convergence on the dual problem to improve the efficiency. Theoretical properties of our proposed algorithm have been established. In particular, we show that the convergence rate of our algorithm is asymptotically superlinear. The high efficiency and promising performance of our algorithm are illustrated via extensive simulation studies and real data applications, with comparison to several state-of-the-art solvers

    HiQR: An efficient algorithm for high dimensional quadratic regression with penalties

    Full text link
    This paper investigates the efficient solution of penalized quadratic regressions in high-dimensional settings. We propose a novel and efficient algorithm for ridge-penalized quadratic regression that leverages the matrix structures of the regression with interactions. Building on this formulation, we develop an alternating direction method of multipliers (ADMM) framework for penalized quadratic regression with general penalties, including both single and hybrid penalty functions. Our approach greatly simplifies the calculations to basic matrix-based operations, making it appealing in terms of both memory storage and computational complexity.Comment: 18 page

    Autoregressive Networks

    Get PDF
    We propose a first-order autoregressive model for dynamic network processes in which edges change over time while nodes remain unchanged. The model depicts the dynamic changes explicitly. It also facilitates simple and efficient statistical inference such as the maximum likelihood estimators which are proved to be (uniformly) consistent and asymptotically normal. The model diagnostic checking can be carried out easily using a permutation test. The proposed model can apply to any network processes with various underlying structures but with independent edges. As an illustration, an autoregressive stochastic block model has been investigated in depth, which characterizes the latent communities by the transition probabilities over time. This leads to a more effective spectral clustering algorithm for identifying the latent communities. Inference for a change point is incorporated into the autoregressive stochastic block model to cater for possible structure changes. The developed asymptotic theory as well as the simulation study affirms the performance of the proposed methods. Application with three real data sets illustrates both relevance and usefulness of the proposed models

    On the sparsity of signals in a random sample

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    A direct approach for sparse quadratic discriminant analysis

    Get PDF
    Quadratic discriminant analysis (QDA) is a standard tool for classification due to its simplicity and flexibility. Because the number of its parameters scales quadratically with the number of the variables, QDA is not practical, however, when the dimensionality is relatively large. To address this, we propose a novel procedure named DA-QDA for QDA in analyzing high-dimensional data. Formulated in a simple and coherent framework, DA-QDA aims to directly estimate the key quantities in the Bayes discriminant function including quadratic interactions and a linear index of the variables for classification. Under appropriate sparsity assumptions, we establish consistency results for estimating the interactions and the linear index, and further demonstrate that the misclassification rate of our procedure converges to the optimal Bayes risk, even when the dimensionality is exponentially high with respect to the sample size. An efficient algorithm based on the alternating direction method of multipliers (ADMM) is developed for finding interactions, which is much faster than its competitor in the literature. The promising performance of DA-QDA is illustrated via extensive simulation studies and the analysis of four real datasets
    corecore