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v

SUMMARY

The “large p small n” data sets are frequently encountered by various re-

searchers during the past decades. One of the commonly used assumptions for

these data sets is that the data set is sparse. Various methods have been devel-

oped in dealing with model selection, signal detection or large covariance matrix

estimation. However, as far as we know, the problem of estimating the “spar-

sity” has not been addressed thoroughly yet. Here loosely speaking, sparsity is

interpreted as the proportion of parameters taking the value 0.

Our work in this thesis contains two parts. The first part (Chapter 2) deals with

estimating the sparsity of a sparse random sequence. An estimator is constructed

from a sample analog of certain Hermitian trigonometric matrices. To evaluate our

estimator, upper and lower bounds for the minimax convergence rate are derived.



Summary vi

Simulation studies show that our estimator performs well.

The second part (Chapter 3) deals with estimating the sparsity of a large covari-

ance matrix or correlation matrix. This to some degree is related to the problem

of finding a universal data-dependent threshold for the elements of a sample corre-

lation matrix. We propose two estimators ω̂1 and ω̂2 based on different methods.

ω̂1 is derived assuming that the observations X1, ..., Xn are n independent random

samples from a multivariate normal distribution with mean 0p and unknown popu-

lation matrix Σ = (σij)p×p. In contrast, ω̂2 is derived under more general (possibly

non-Gaussian) assumptions on the distribution of observations X1, ..., Xn. Consis-

tency of these two estimators are proved under mild conditions. Simulation studies

are carried out with a comparison to thresholding estimators derived from cross

validation and adaptive cross validation methods.
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CHAPTER 1

Introduction

High dimension, low sample size (HDLSS) data sets are frequently encountered

nowadays in many different fields. However it is well known that the statistical

analysis of HDLSS data is very challenging and possibly intractable in some in-

stances. Fortunately in many situations, the data can be assumed to have some

particular structures. One of the commonly used assumptions of HDLSS data is

sparesness, and under this assumption, accurate statistical inference becomes fea-

sible. There are a lot of interesting problems in sparse HDLSS data analysis, and

here we mainly focus on two of these problems: (i) sparse signal detection and (ii)

sparse covariance selection.
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For sparse signal detection problem, the sequence of observations X1, . . . , Xn

is usually modeled as Xi = Θi + Zi, where Θ1, ...,Θn is an unobservable signal

sequence and Z1, ..., Zn is a sequence of noise. The objective of this problem is to

estimate the unobservable sparse signal sequence Θ1, ...,Θn. For example, John-

stone and Silverman (2004) considered the estimation of sparse sequences observed

in Gaussian white noise. More precisely, the Zi’s are N(0, 1) random variables in-

dependent of the Θi’s, and that the Θi’s are sparse is modeled by using the prior

mixture density for Θi: fprior(θ) = ω0δ0 + (1 − ω0)h(θ) where ω0 ∈ (0, 1] is a con-

stant, δ0 denotes point mass at 0 and h is a density function. Sparsity is now

quantified by ω0, which is the proportion of θi’s that are zero when n → ∞. In-

stead of finding estimators for the unobservable signal sequence, in this thesis we

are more interested in answering a relatively basic question: “How sparse is the

unobservable signal sequence (meaning how many of the θi’s are 0)?” Or equiva-

lently, we are aiming at estimating ω0. Johnstone and Silverman (2004) used the

posterior median to estimate the signal sequence. Although the signal sequence

can be estimated quite well, according to our simulations, the resulting estimator is

usually not able to estimate ω0 well unless ω0 is close to 1. In fact, the problem of

estimating ω0 has not been addressed a lot in the literature we have covered. In ad-

dition, in the literature, Z1, ..., Zn are usually assumed to be normally distributed.

It would be practically important to study the problem under more general noise

distributions.
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The second problem is related to sparse covariance matrix estimation. The

problem of estimating a large sparse covariance matrix has generated much interest

in recent years. Here the literature is huge. This includes El Karoui (2008), Bickel

and Levina (2008a, b), Lam and Fan (2009), Cai and Liu (2011) and the references

cited therein. In this thesis, we aim at estimating the sparsity of a large population

covariance or correlation matrix. As far as we know, this problem has not been

studied directly yet. One immediate application of a good sparsity estimator is in

choosing the thresholding parameter for thresholding estimators [e.g. Bickel and

Levina (2008a, b), Cai and Liu (2011)]. More precisely, an important problem

in thresholding methods is to find data-dependent thresholds. However, there are

still some problems in the existing methods for finding the thresholds. For exam-

ple, Bickel and Levina (2008b) used cross validation in finding a data-dependent

universal threshold while Cai and Liu (2011) proposed an adaptive thresholding

method which adapts heteroscedastic noise. However, cross validation and adaptive

cross validation methods are computationally intensive and tend to over-threshold

according to our simulations. Another approach in finding thresholds for the ele-

ments of a sample covariance matrix where the noise may be heteroscedastic is to

find a universal threshold for the sample correlation matrix. However, as far as we

know, there is not enough study on this. On the other hand, given a good sparsity

estimator, we can find a universal threshold for the elements of a sample correla-

tion matrix such that the sparsity of the resulting thresholded sample correlation
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matrix equals to the estimated sparsity. In summary, we are aiming at addressing

the question “How sparse is a large covariance matrix?”. Intuitively, if we can

estimate the sparsity well, the corresponding data-dependent thresholds for the

covariance matrix could perform well in estimating the true covariance structure.

To conclude this subsection, the problems we study in this thesis are (i) to

estimate the sparsity of a sparse random sequence and (ii) to estimate the sparsity

of a large sparse covariance matrix. Here, loosely speaking, sparsity is interpreted

as the proportion of parameters taking the value 0. In Section 1.1, the literature on

estimating a sparse signal sequence will be reviewed. In Section 1.2, some popular

methods used in estimating a large sparse covariance matrix will be discussed.

1.1 Signal detection

Signal activity detection is a critical stage in many research fields. The objective

of signal detection is to determine the presence or absence of a signal embedded in

additive noise. More precisely, we have a sequence of observations X1, ..., Xn, which

is usually modeled as Xi = θi + Zi, i = 1, ..., n. Here θ1, .., θn is the unobservable

signal sequence and Zi, ..., Zn is a sequence of noise. The objective is to estimate

the positions of those non-zero θi’s. The unobservable sequence θ1, ..., θn is usually

assumed to be sparse, in that a number of θi’s are identically 0.
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Next we review some approaches in solving this problem.

• Multiple hypothesis testing. This is one of the popular approaches.

The problem of determining the presence or absence of a signal is treated as a

Hypothesis-Testing problem:

H0 : θi = 0 v.s. H1 : θi 6= 0 , i = 1, ..., n.

Here the literature is huge. This includes Abramovich and Benjamini (1995),

Donoho and Jin (2004), Hall and Jin (2010) and the references cited therein.

• SURE. Donoho and Johnstone (1995) derived estimators for the sparse signal

sequence by minimizing Stein’s unbiased risk estimate for the mean squared error of

soft thresholding. However, this method is aiming at estimating the signal sequence

and the corresponding sparsity of the estimated signal sequence is usually different

from the true sparsity.

• FDR. Benjamini and Hochberg (1995) proposed the false discovery rate ap-

proach which is derived from the principle of controlling the false discovery rate in

simultaneous hypothesis testing. This method also led to a spur of further research

such as Benjamini and Yekutieli (2001), Storey (2002) and Chung et. al. (2007).

However, for different false discovery rate parameter q, the resulting sparsity of the

estimated signal sequence varies.
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• Empirical Bayes approach Johnstone and Silverman (2004) modeled the

unobservable signal sequence Θi’s using the prior mixture density for Θi: fprior(.) =

ω0δ0 + (1− ω0)h(.) where ω0 ∈ (0, 1] is a constant, δ0 denotes point mass at 0 and

h is a density function. Sparsity is then quantified by ω0. Notice that the posterior

distribution of Θi’s are also a mixture of point mass at 0 with some continuous

distribution function, by using the posterior median as an estimator for each Θi, the

resulting estimator of the signal sequence will be sparse. However, they assumed

that the signal sequence is very sparse in that ω0 tends to 0 as n tends to infinity.

Above all, the noise Z1, ..., Zn are usually assumed to be independently dis-

tributed normal random variables [e.g. Johnstone and Silverman (2004), Lee et.

al. (2010)] or normal random variables with known covariance matrix or the co-

variance matrix can be estimated [e.g. Hall and Jin (2010)]. Another commonly

used assumption is that the signal sequence θ1, ..., θn is very sparse, in that the pro-

portion of zero θi’s tends to 1 as n tends to infinity [e.g. Donoho and Jin (2004),

Hall and Jin (2010)]. In this thesis, we consider the problem of estimating the

sparsity of the signal sequence. Consequently, a natural estimator for the set of

nonzero θi’s can be obtained by thresholding the observation sequence based on the

estimator of ω0. In Chapter 2, we propose a more general model as the prior of Θi’s

[see (2.1)], where the sparsity is quantified by ω0 similar to that in Johnstone and

Silverman (2004) and Lee et. al. (2010). Different from the literature, we assume
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that 0 < ω0 ≤ 1 instead of assuming ω0 tends to 1; and we assume that the noise

distribution may be unknown but there is a sequence of pure noise observations

Y1, ..., Ym. Particularly, the Zi’s may not be normally distributed or independent.

To evaluate the performance of our estimator, we also derived lower bounds of the

minimax risk for estimating ω0 when the noise is known. Given a good estimator

of sparsity it would be interesting to study the problem of estimating the signal

sequence, and hopefully, we can obtain good estimators under mild conditions.

However, this is beyond the scope of this thesis and will be treated as future work.

1.2 Covariance selection

Let X1, . . . , Xn be independent, identically distributed p-dimensional random

vectors with mean 0p, covariance matrix Σ = (σij)p×p and correlation matrix

Γ = (ρij)p×p. For definiteness, the sample covariance matrix is denoted by S =

(sjk)p×p = (1/n)
∑n

i=1XiX
′
i, and the sample correlation matrix is denoted as

R = (rjk)p×p where rjk = sjk/
√
sjjskk and Xi = (X1i, . . . , Xpi)

′.

Given observations X1, . . . , Xn or S, the problem of estimating the population

covariance matrix Σ occurs naturally in many statistical problems that arise in

various scientific applications. During the past decades, the “large p small n”

data sets are frequently encountered by various researchers and sometimes the
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estimation problem involves the case where n < p. The usual estimator for the

covariance matrix Σ is the sample covariance matrix S, where S is distributed

according to the Wishart distribution Wp(Σ, n). Although S is unbiased, it is

known that:

i) The sample eigenvalues of S tend to be more spread out than the population

eigenvalues, unless p/n→ 0;

ii) S is singular when n < p.

Many works have been done to construct better estimators either for the covari-

ance matrix or the concentration matrix. One of the problems people try to solve is

i) mentioned above. Stein (1975) proved the “Wishart identity” (also proved inde-

pendently by Haff (1977)), and proposed a non-asymptotic approach in estimating

the covariance matrix, where the eigenvalues of the sample covariance matrix are

shrunk. Extension to estimating two covariance matrices based on a similar non-

asymptotic approach can be found in Loh (1988) and Loh (1991). A Monte Carlo

study of Stein’s estimator with comparison to other estimators can be found in Lin

and Perlman (1985). Dey and Srinivasan (1986) constructed a class of minimax

estimators for Σ, which shrink or expand the sample eigenvalues depending on

their magnitudes. However, both Stein’s estimator and Dey and Srinivasan’s esti-

mator do not preserve the order of eigenvalues and the resulting estimators of the
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eigenvalues can be negative. Haff (1991) derived an estimator similar to Stein’s

but was computed under the constraint of maintaining the order of the sample

eigenvalues. There are also some authors who estimate covariance matrices from a

Bayes perspective. The idea is to specify an appropriate prior for the population

covariance matrix and choose a (shrinkage) estimator based on a particular loss

function. Yang and Berger (1994) developed the reference non-informative prior

for a covariance matrix and obtained expressions for the resulting Bayes estima-

tors, which are comparable to Stein’s (1975) and Haff’s (1991) estimators. Later,

Kass (2001) suggested placing normal prior distributions on the logarithm of the

eigenvalues and obtained a shinkage estimator for the covariance matrix.

The other case, which is also the main concern of this thesis, is the case when

p and n are both very large, including the case n < p. Since the dimension of

parameters (p(p+ 1)/2) can be very large relative to the sample size, the problem

of estimating a covariance matrix becomes much more difficult. Fortunately, the

covariance matrix or concentration matrix is usually believed and assumed to have

some structures, such as ordering between variables and sparseness. The shrinkage

estimators discussed above are not applicable to the n < p case since the sample

covariance matrix is no longer positive definite. Ledoit and Wolf (2004) proposed

a well-conditioned shrinkage estimator which is applicable to the case n < p. Their
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estimator is of the form:

Σ∗ = ρ1I + ρ2S,

such that it minimizes the risk with respect to the following loss function:

L(Σ∗,Σ) = tr(Σ∗ − Σ)(Σ∗ − Σ)′/p.

However, when the covariance matrix is believed or assumed to be sparse, this

estimator does not seem appropriate as the elements of the estimator equal 0 with

probability 0. To estimate a large but sparse covariance matrix, we found that there

are basically three different approaches in recent literature: penalized likelihood

approach, Bayesian approach and thresholding approach.

i) Penalized likelihood approach. Estimators are obtained by minimizing

the penalized negative normal likelihood for the population covariance matrix or

concentration matrix or their corresponding Cholesky factors. Huang et. al. (2006)

used LASSO on the off-diagonal elements of the Cholesky factor from the modified

Cholesky decomposition. Yuan and Lin (2007) used LASSO for estimating the

concentration matrix in the Gaussian graphical model, subjected to the positive

definite constraint. Based on the penalized likelihood with L1 penalty on the off-

diagonal elements of the concentration matrix, Friedman et. al. (2008) proposed

a simple and fast algorithm for the estimation of a sparse concentration matrix,

and Rothman et. al. (2008) obtained the rate of convergence under the Frobenius
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norm. Lam and Fan (2009) studied not only the LASSO penalty but also other

non-convex penalties such as SCAD and hard-thresholding penalty, and obtained

explicit rates of convergence.

ii) Bayesian approach. As far as we know, there has not been much research

done on estimating large sparse covariance matrices using Bayes methods. Wong

et. al. (2003) used a prior for the partial correlation matrix that allows elements of

the inverse partial correlation matrix to be zero. The computation was carried out

using Markov chain Monte Carlo (MCMC). However, their estimator also does not

introduce zeros since they used the mean of samples generated from the posterior

using MCMC. Also, the computation can be very time consuming when p is large.

Smith and Kohn (2002) introduced a prior that introduces zeros in the off-diagonal

elements of the Cholesky factor of the concentration matrix. However, the method

can only be applied to longitudinal data, which has a relatively simple structure.

iii) Thresholding approach. The idea behind this approach is very natural:

when we believe that there are many zeros in the covariance matrix, an estimator

could possibly be obtained by thresholding some of the off-diagonal elements of the

sample covariance matrix or the correlation matrix that have small magnitude to

be zero. Bickel and Levina (2008a, b) proposed estimators by tapering or thresh-

olding sample covariance matrices, and showed that the thresholding estimators

are consistent over a class of sparse matrices. Rothman, Levina and Zhu (2009)
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considered thresholding sample covariance matrices with more general thresholding

functions possessing a shrinkage property. El Karoui (2008) studied the threshold-

ing estimators under a special notion of sparsity called β − sparsity, and showed

that β − sparse matrices, with β < 1/2, are consistently estimable in the spec-

tral norm. More recently, Cai and Liu (2011) proposed an adaptive thresholding

method in thresholding sample covariance matrices which is applicable when the

noise is not homoscedastic.

Among the literature mentioned above, although some of the authors were aim-

ing at obtaining sparse estimators for the population covariance matrix, in the other

words, they were doing estimation and covariance selection simultaneously, they

did not explore the problem of estimating the sparsity of the population covariance

matrix directly. In addition, for the thresholding approach, although the idea of

thresholding estimator is very natural, it is difficult to answer the question “How to

choose a data-dependent threshold?” Methods for finding a data-dependent thresh-

olding parameter in the literature include cross validation (Bickel and Levina (2008

a, b)), and adaptive cross validation (Cai and Liu (2011)). However, cross vali-

dation and adaptive cross validation are computationally intensive and tend to

over-threshold according to our simulations. Furthermore, these two methods are

not designed to address the question “How sparse is the matrix?” directly, therefore

the resulting threshold may not perform well in terms of covariance selection.
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In Chapter 3 of this thesis, we aim at estimating the sparsity of the population

covariance matrix. If the sparsity of the population covariance matrix can be well

estimated, we can estimate the covariance structure by thresholding the sample

correlation matrix, which is also adaptive to the heteroscedastic case. More specif-

ically, if ω, the sparsity of the population matrix, can be well estimated by ω̂, we

can find the corresponding universal threshold in [0, 1) such that the sparsity of

the thresholded sample correlation matrix equals to ω̂. This approach to some

degree can also be viewed as a method in finding data-dependent thresholds for

the sample covariance matrix.

To model the sparsity of the population covariance matrix, motivated by the

signal detection problem, we model the population correlation coefficients using a

mixture of a point mass at zero and a distribution function G in [-1,1]:

(1− ω)dG(ρ) + ωδ0(ρ),

where δ0(ρ) denotes point mass at ρ = 0. Then the problem becomes estimating

ω as in Chapter 2.

In this thesis, we study only the problem of estimating the sparsity parameter

ω. The problem of estimating the population matrix based on a good estimator of

ω will be treated as future work, as it is beyond the scope of this thesis.
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CHAPTER 2

Signal Detection

2.1 Introduction

Let X1, ..., Xn be a random sample of observations. Assume that for each

1 ≤ i ≤ n, Xi = θi + Zi where Z1, Z2, ..., are stationary, strong mixing random

variables with marginal probability density function fZ . θi and Zi are commonly

regarded as the “signal” and “noise” respectively. fZ and θi’s are unknown and we

assume that there is an independent sample of pure noise observations Y1, ..., Ym

having the same joint distribution as Z1, ..., Zm. If m = ∞, then fZ would be

known. We assume that the sequence of Xi’s may be sparse in that a number of θi’s
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are identically 0 and our objective is to estimate the set Ξ = {1 ≤ i ≤ n : θi = 0}.

Our approach is to first estimate the proportion ω0 of θi’s such that θi = 0. ω0 is

a measure of the sparsity of the signals from the random sample X1, .., Xn. Once an

estimate ω̂0 for ω0 is obtained, let k be the integer satisfying (k−1)/n < ω̂0 ≤ k/n

and X(1) ≤ X(2) ≤ ... ≤ X(n) be the ordered statistics of |X1|, ..., |Xn|. Then a

natural estimate for Ξ is as follow:

Ξ̂ = {1 ≤ i ≤ n : |Xi| ≤ X(k)}.

More specifically, let Θ1, ...,Θn be independent, identically distributed random

variables each with cumulative distribution function

FΘ(θ) =
ν∑

j=0

ωjI{θ≥µj} + (1−
ν∑

j=0

ωj)

∫ θ

−∞
h(y)dy, ∀θ ∈ R, (2.1)

where µ0 = 0, ν is a non-negative integer, ω0 > ω1 ≥ · · · ≥ ων > 0 are constants

satisfying
∑ν

j=0 ωi ≤ 1, µ1, ..., µν are non-zero, distinct constants and h is a prob-

ability density function. We assume that the Θi’s are independent of the Zj’s.

Consequently, Xi = Θi +Zi has the mixture probability density function given by:

fX(x) =
ν∑

j=0

ωjfZ(x− µj) + (1−
ν∑

j=0

ωj)

∫
R
fZ(x− y)h(y)dy, ∀x ∈ R. (2.2)

The mixture density given by (2.2) is very general in that the mixing distribu-

tion has possibly both discrete and continuous components. We assume that

ν, µ0, ..., µν , ω0, ..., ων and h are unknown, and our target is to estimate ω0, which

is the proportion of θi’s that are zero when n→∞.
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The rest of this chapter is organized as follows. Section 2.2 introduces a num-

ber of trigonometric matrices. Proposition 2.1 provides explicit bounds for their

largest eigenvalues. Motivated by these bounds, we propose a method-of-moments

estimator for ω0 in Section 2.3 when fZ is known. Upper bounds for the expected

L1 loss of this estimator are also derived. In Section 2.4, we show that the esti-

mator of Lee, et al. (2010) achieves the same upper bounds as our estimator. In

Section 2.5 we derive lower bounds for the minimax risk for estimating ω0 when

fZ is known. Last but not the least, we generalize our estimator in Section 2.6

to the case when fZ is unknown but there is an independent sample of pure noise

observations.

2.2 Trigonometric moment matrices

Following Li and Loh (2011), for any positive integer q, we define a matrix-

valued function Tq : (−1, 1) → C(q+1)×(q+1) by:

Tq(x) =



1 eix ei2x ... eiqx

e−ix 1 eix ... ei(q−1)x

e−i2x e−ix 1 ... ei(q−2)x

...
...

...
. . .

...

e−iqx e−i(q−1)x e−i(q−2)x ... 1
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=



1

e−ix

...

e−iqx


(

1, eix, . . . , eiqx

)
.

where i =
√
−1. Further define Mq = ETq(Θ) = Mq,disc +Mq,cont, where

Mq,disc = ωTq(0) =


ω · · · ω

...
. . .

...

ω · · · ω

 ,

Mq,cont = (1− ω)

∫
R
Tq(θ)h(θ)dθ

= (1− ω)

∫ 2π

0

Tq(θ)
∞∑

j=−∞

h(θ + 2πj)dθ.

Notice that Mq,Mq,disc and Mq,cont are Hermitian matrices. This implies that all

their eigenvalues are real-valued. Let λi(A) denote the ith largest eigenvalues of

A where A is an arbitrary (q + 1) × (q + 1) Hermitian matrix. Thus λ1(Mq) ≥

λ2(Mq) ≥ · · · ≥ λq+1(Mq).

For a function h(x) : x→ R, the essential supremum of h is defined by

ess supx∈Rh = inf{a ∈ R : µ({x : h(x) > a}) = 0},

where µ(·) is the Lebesgue measure. Similarly, the essential infimum of h is defined

by

ess infx∈Rh = sup{b ∈ R : µ({x : h(x) < b}) = 0}.
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The proof of Proposition 2.1 can be found in Li and Loh (2011).

Proposition 2.1. Assume that the cumulative distribution function of Θ is given

by (2.1). With the above notation, suppose ω0 > ω1 ≥ · · · ≥ ων > 0 and µ1, ..., µν

are nonzero constants such that
µi−µj

2π
/∈ Z for any 1 ≤ i < j ≤ ν. Then writing

Ω =

√
8

∑
0≤j<k≤ν

πjπk

|1− ei (µj−µk)|2
,

we have

(q + 1)ω0 − Ω + 2π(1−
ν∑

k=0

ωk)

{
ess inf0≤θ<2π

∞∑
j=−∞

h(θ + 2πj)

}

≤ λ1(Mq) ≤ (q + 1)ω0 + Ω + 2π(1−
ν∑

k=0

ωk)

{
ess sup0≤θ<2π

∞∑
j=−∞

h(θ + 2πj)

}
.

Remark 2.1. We observe from the proof in Li and Loh (2011) that if ω0 > ω1 ≥

· · · ≥ ων > 0 is not satisfied, the above inequality will become

(q + 1) max
0≤k≤ν

ωk − Ω + 2π(1−
ν∑

k=0

ωk)

{
ess inf0≤θ<2π

∞∑
j=−∞

h(θ + 2πj)

}
≤ λ1(Mq) ≤

(q + 1) max
0≤k≤ν

ωk + Ω + 2π(1−
ν∑

k=0

ωk)

{
ess sup0≤θ<2π

∞∑
j=−∞

h(θ + 2πj)

}
,

and our estimator ω̂0 defined in this chapter will become an estimator for max0≤k≤ν ωk.

The following is an immediate corollary of Proposition 2.1.

Corollary 2.1. Suppose that ess sup0≤θ<2π

∑∞
j=−∞ h(θ + 2πj) < ∞. Then under

assumptions of Proposition 2.1, λ1(Mq)

q
→ ω0 as q →∞.
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Corollary 2.1 gives, at least in principle, a way for estimating ω0 by estimating

the largest eigenvalue of Mq for a sufficiently large q.

2.3 A method-of-moments estimator when fZ is

known

In this section we assume that the probability density function fZ of the noise

distribution is known. Let X1, ..., Xn be as in the introduction. Since Xi = Θi +Zi

and that Θi and Zi are independent, we have

E(e−ikΘ1) = E(e−ikX1)[E(e−ikZ1)]−1, ∀k ∈ Z,

provided the right hand side is well defined. Recall that Z1, Z2, ..., are stationary,

strongly mixing, mean-zero random variables. For integers 1 ≤ a ≤ b, let F b
a =

σ(Zi, a ≤ i ≤ b) denote the σ − field generated by {Zi, a ≤ i ≤ b}. Define for all

k, l ≥ 1,

α(F k+1
1 ,F∞

k+l+1) = sup
A∈Fk+1

1 ,B∈F∞
k+l+1

|P (A ∩B)− P (A)P (B)|,

α(l) = sup
k≥1

α(F k+1
1 ,F∞

k+l+1). (2.3)

From the definition of strong mixing, we have α(l) → 0 as l→∞. Now let q be a

positive integer depending only on n. Since Mq = E[Tq(θ)], we estimate Mq using
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the sample analog, that is, the (q + 1)× (q + 1) matrix M̂q whose (j, k)th element

is given by

(M̂q)jk =
n−1

∑n
i=1 e

−i(j−k)Xi

E(e−i(j−k)Z1)
, ∀1 ≤ j, k ≤ q + 1.

M̂q is a Hermitian matrix and hence its eigenvalues are real numbers. We propose

as an estimator of ω0,

ω̂0 =


1, if (λ1(M̂q)− 1)/q > 1,

(λ1(M̂q)− 1)/q, if 0 ≤ (λ1(M̂q)− 1)/q ≤ 1,

0, if (λ1(M̂q)− 1)/q < 0,

(2.4)

for a sufficiently large integer q. ω̂0 can be regarded as a bias corrected version of

the naive estimator (λ1(M̂q)/(q+1) ∧ 1) in the following way. Suppose ν = 0 and

h is the density of the uniform distribution on [a, a+2πk) for some constant a and

integer k 6= 0. Then it follows from Proposition 2.1 that ω0 = (λ1(Mq)− 1)/q and

ω̂0 is an estimate of it.

Following Fan (1991), we call fZ supersmooth of order β if its Fourier transform

ϕfZ
(t) =

∫ ∞
−∞ eitsfZ(s)ds satisfies

d0|t|β0 exp(−|t|β/γ) ≤ |ϕfZ
(t)| ≤ d1|t|β1 exp(−|t|β/γ), as |t| → ∞, (2.5)

for some strictly positive constants d0, d1, γ, β and constants β0, β1. We call fZ

ordinary smooth of order β if its Fourier transform ϕfZ
(t) satisfies

d0|t|−β ≤ |ϕfZ
(t)| ≤ d1|t|−β, as |t| → ∞, (2.6)
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for some strictly positive constants d0, d1 and β. Examples for supersmooth distri-

butions are normal, Cauchy, and mixture of any supersmooth distributions. Ex-

amples for ordinary smooth distributions include gamma, double exponential and

mixture of any ordinary smooth distributions.

Definition 2.1. For each constant C > 0, define FC to be the set of probability

density functions fX given by (2.2) where ess sup0≤θ<2π

∑∞
j=−∞ h(θ + 2πj) ≤ C.

Definition 2.2. Let U denote the set of probability density functions fX given

by (2.2) where ν = 0 and h is the density of a uniform distribution on [a, a+ 2πk)

for some constant a and integer k > 0.

Notice that, when C ≥ 1/(2π), we have U ⊂ FC . The following proposition

provides upper bounds for the expected L1 loss of ω̂0.

Proposition 2.2. Let ω̂0 be as in (2.4) and α be as in (2.3). Suppose ϕfZ
(k) 6= 0

for all k ∈ Z. Then

E|ω̂0 − ω0| ≤
∑ν

i=1 ωi

q
+

2

q

q∑
k=1

1√
n

[1 + 16
∑∞

l=1 α(l)]
1
2

|ϕfZ
(k)|

+
Ω

q
+

1−
∑ν

k=0 ωk

q
H,

where

H = max{2πess supθ∈[0,2π)

∞∑
j=−∞

h(θ + 2πj)− 1, 1− 2πess infθ∈[0,2π)

∞∑
j=−∞

h(θ + 2πj)}.

If in addition we have fX ∈ U , then

E|ω̂0 − ω0| ≤
2

q

q∑
k=1

1√
n

[1 + 16
∑∞

l=1 α(l)]
1
2

|ϕfZ
(k)|

.
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Proof. Denote the matrix norm induced by l1 − norm for vectors as ‖ A ‖1. We

have:

‖ A ‖1= max
1≤j≤q+1

q+1∑
i=1

|aij|,

which is the maximum absolute column sum of the matrix A. Write ρ(A) as the

spectral radius of A. We observe from Theorem 5.6.9 of Horn and Johnson (1985)

that

λ1(M̂q −Mq) ≤ ρ(M̂q −Mq)

≤ ‖ M̂q −Mq ‖1

≤ 2

q+1∑
k=1

|(M̂q −Mq)q+1,k|.

Similarly we have

λq+1(M̂q −Mq) = −λ1(Mq − M̂q) ≥ −2

q+1∑
k=1

|(M̂q −Mq)q+1,k|.

By Proposition 2.1, we have

λ1(M̂q)− 1− qω0 ≥ λ1(Mq) + λq+1(M̂q −Mq)− 1− qω0

≥ 2π(1−
ν∑

k=0

ωk)ess inf0≤θ<2π

∞∑
j=−∞

h(θ + 2πj)

+(q + 1)ω0 − 2

q+1∑
k=1

|(M̂q −Mq)q+1,k| − Ω− 1− qω0

= −(1−
ν∑

k=0

ωk){1− 2πess inf0≤θ<2π

∞∑
j=−∞

h(θ + 2πj)}
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−
ν∑

k=1

ωk − 2

q+1∑
k=1

|(M̂q −Mq)q+1,k| − Ω,

and

λ1(M̂q)− 1− qω0 ≤ λ1(Mq) + λ1(M̂q −Mq)− 1− qω0

≤ 2π(1−
ν∑

k=0

ωk)ess sup0≤θ<2π

∞∑
j=−∞

h(θ + 2πj)

+(q + 1)ω0 + 2

q+1∑
k=1

|(M̂q −Mq)q+1,k|+ Ω− 1− qω0

= −(1−
ν∑

k=0

ωk){1− 2πess sup0≤θ<2π

∞∑
j=−∞

h(θ + 2πj)}

−
ν∑

k=1

ωk + 2

q+1∑
k=1

|(M̂q −Mq)q+1,k|+ Ω.

Since ess sup0≤θ<2π

∑∞
j=−∞ h(θ + 2πj) < ∞, and

∫ 2π

0

∑∞
j=−∞ h(θ + 2πj) = 1, we

have

ess inf0≤θ<2π

∞∑
j=−∞

h(θ + 2πj) ≤ 1

2π
≤ ess sup0≤θ<2π

∞∑
j=−∞

h(θ + 2πj),

Therefore, we have

|ω̂0 − ω0| ≤
∑ν

i=1 ωi

q
+

2

q

q+1∑
k=1

|(M̂q −Mq)q+1,k|+
Ω

q
+

1−
∑ν

k=0 ωk

q
H. (2.7)

Also, from Lemma 1 on page 10 of Doukhan (1994) we have

E| 1
n

n∑
i=1

(e−ikXi − Ee−ikXi)|2

=
1

n2

n∑
i=1

n∑
j=1

E[(e−ikXi − Ee−ikXi)(e−ikXj − Ee−ikXj)]

=
1

n2

n∑
i=1

n∑
j=1

[Eeik(Xj−Xi) − Ee−ikXiEeikXj ]
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=
1

n
(1− |EeikXi|2) +

1

n2

n−1∑
i=1

n∑
j=i+1

[Eeik(Xj−Xi) − Ee−ikXiEeikXj ]

+
1

n2

n∑
i=2

i−1∑
j=1

[Eeik(Xj−Xi) − Ee−ikXiEeikXj ]

=
1

n
(1− |EeikXi|2) +

1

n2

n−1∑
i=1

n−i∑
l=1

[Eeik(Xi+l−Xi) − Ee−ikXiEeikXi+l ]

+
1

n2

n−1∑
i=1

n−i∑
l=1

[Ee−ik(Xi+l−Xi) − EeikXiEe−ikXi+l ]

=
1

n
(1− |EeikXi|2) +

2

n2

n−1∑
i=1

n−i∑
l=1

|Ee−ikΘi|2Re[Eeik(Zi+l−Zi) − Ee−ikZiEeikZi+l ]

≤ 1

n
+

16

n2

n−1∑
i=1

n−i∑
l=1

α(l)

≤ 1

n
[1 + 16

∞∑
l=1

α(l)].

Consequently, we have:

2

q

q+1∑
k=1

E|(M̂q −Mq)q+1,k| =
2

q

q∑
k=1

E|
1
n

∑n
i=1(e

−ikXi − Ee−ikXi)

ϕfZ
(k)

|

≤ 2

q

q∑
k=1

[E| 1
n

∑n
i=1(e

−ikXi − Ee−ikXi)|2] 1
2

|ϕfZ
(k)|

≤ 2

q

q∑
k=1

1√
n

[1 + 16
∑∞

l=1 α(l)]
1
2

|ϕfZ
(k)|

.

Substituting this into (2.7) we have

E|ω̂0 − ω0| ≤
∑ν

i=1 ωi

q
+

2

q

q∑
k=1

1√
n

[1 + 16
∑∞

l=1 α(l)]
1
2

|ϕfZ
(k)|

+
Ω

q
+

1−
∑ν

k=0 ωk

q
H.

This proves the first statement of Proposition 2.2. If fX ∈ U , then ν = Ω = 0 and

2π
∞∑

j=−∞

h(θ + 2πj) = 1, ∀ θ ∈ R,
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which implies that H = 0. Consequently,

E|ω̂0 − ω0| ≤ 2

q

q+1∑
k=1

E|(M̂q −Mq)q+1,k|

≤ 2

q

q∑
k=1

1√
n

[1 + 16
∑∞

l=1 α(l)]
1
2

|ϕfZ
(k)|

.

The following two theorems are the main results of this section. They establish

upper bounds to the minimax convergence rate of ω̂0 with respect to fX ∈ FC and

fZ suitably smooth.

Theorem 2.1. Let ω̂0 be as in (2.4)and α be as in (2.3) such that
∑∞

l=1 α(l) <∞.

Suppose fZ is supersmooth of order β, ϕfZ
(k) 6= 0 for all k ∈ Z. Then by choosing

q = b(c log n)
1
β c for some constant 0 < c < γ/2, we have, for any C > 0,

sup
fX∈FC

EfX
|ω̂0 − ω0| = O(

1

log1/β n
);

By choosing q to be a constant, we have

sup
fX∈U

EfX
|ω̂0 − ω0| = O(

1√
n

).

Proof. Since ϕfZ
(k) 6= 0 for all k ∈ Z, we observe from (2.5) that there exists a

constant d such that

1√
nmink∈{1,...,q} |ϕfZ

(k)|
≤ dq−β0 exp(qβ/γ)√

n
.
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Now choosing q = b(c log n)
1
β c for some constant 0 < c < γ/2, we deduce from

Proposition 2.2 that supfX∈FC
EfX

|ω̂0−ω0| = O( 1

log1/β n
). The second statement in

this theorem is a straightforward consequence of the second statement of Proposi-

tion 2.2.

The first statement of Theorem 2.1 together with Theorem 2.5 in Section 2.5

show that ω̂0 achieves the optimal minimax convergence rate with respect to

fX ∈ FC for supersmooth fZ . This includes the case of normal noise since the

normal density is supersmooth. The second statement of Theorem 2.1 shows that

ω̂0 converges in a
√
n rate with respect to fX ∈ U . The following theorem gives

similar results when fZ is ordinary smooth.

Theorem 2.2. Let ω̂0 be as in (2.4)and α be as in (2.3) such that
∑∞

l=1 α(l) <∞.

Suppose fZ is ordinary smooth of order β, ϕfZ
(k) 6= 0 for all k ∈ Z. Then by

choosing q = bcn1/(2β+2)c for some constant c > 0, we have, for any C > 0,

sup
fX∈FC

EfX
|ω̂0 − ω0| = O(

1

n1/(2β+2)
);

By choosing q to be a constant, we have

sup
fX∈U

EfX
|ω̂0 − ω0| = O(

1√
n

).

Proof. Similar to the proof of Theorem 2.1, since ϕfZ
(k) 6= 0 for all k ∈ Z, we

observe from (2.6) and Proposition 2.2 that by choosing q = bcn1/(2β+2)c for some
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constant c > 0, we have

sup
fX∈FC

EfX
|ω̂0 − ω0| = O(

1

n1/(2β+2)
);

The second statement of Theorem 2.2 is a straight forward consequence of the

second statement of Proposition 2.2.

2.4 The estimator of Lee, et al. (2010)

When fZ is symmetric about 0, Lee, et al. (2010) proposed an estimator ω̃0 for

ω0 where

ω̃0 =
1

2nT

n∑
j=1

Re

∫ T

−T

eitXj

ϕfZ
(t)
dt.

In this section, we show that, ω̃0 obtains the same bound as ω̂0.

Proposition 2.3. Suppose fZ is symmetric about 0 such that ϕ(t) 6= 0 for any

t ∈ R. Denote the Fourier transform of h as ϕh and assume that ||ϕh||1 < ∞.

Then

E|ω̃0 − ω0| ≤

√
(1− ω0)2||ϕh||21

4T 2
+

2

n
[
1

T

∫ T

0

1

ϕfZ
(t)
dt]2.

Proof. Notice that

E|ω̃0 − ω0| ≤
√
E|ω̃0 − ω0|2
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=
√
E(ω̃0 − Eω̃0)2 + (Eω̃0 − ω0)2.

By Lemma 1 and (12) of Lee, et al. (2010), we immediately have:

E|ω̃0 − ω0| ≤

√
(1− ω0)2||ϕh||21

4T 2
+

2

n
[
1

T

∫ T

0

1

ϕfZ
(t)
dt]2.

Theorem 2.3. Suppose fZ is supersmooth of order β and is symmetric about 0

such that ϕ(t) 6= 0 for any t ∈ R. Denote the Fourier transform of h as ϕh and

assume that ||ϕh||1 < ∞. Then by choosing T = (c log n)1/β for some constant

0 < c < γ/2, we have

E|ω̃0 − ω0| = O(
1

log1/β n
).

Proof. When T = (c log n)1/β,
(1−ω0)2||ϕh||21

4T 2 = O( 1

log2/β n
), and by (2.5), there exists

a constant d such that

1√
nT

∫ T

0

1

ϕfZ
(t)
dt =

d√
nT

∫ T

0

(1 + t−β0)etβ/γdt = o(
1

log1/β n
).

Therefore, by Proposition 2.3 we have E|ω̃0 − ω0| = O( 1

log1/β n
).

Theorem 2.4. Suppose fZ is ordinary smooth of order β and is symmetric about

0 such that ϕ(t) 6= 0 for any t ∈ R. Denote the Fourier transform of h as ϕh

and assume that ||ϕh||1 < ∞. Then by choosing T = cn1/(2β+2) for some constant

c > 0, we have

E|ω̃0 − ω0| = O(
1

n1/(2β+2)
).
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Proof. When T = cn1/(2β+2),
(1−ω0)2||ϕh||21

4T 2 = O( 1
n1/(β+1) ), and by (2.5), there exists

a constant d such that

1√
nT

∫ T

0

1

ϕfZ
(t)
dt =

d√
nT

∫ T

0

(1 + tβ)dt = O(
1

n1/(2β+2)
).

Therefore, by Proposition 2.3 we have E|ω̃0 − ω0| = O( 1
n1/(2β+2) ).

2.5 Lower bounds

In this section, we establish lower bounds to the minimax convergence rate for

the problem of estimating ω0. Assuming that the noise random variables Z1, ..., Zn

are independent and identically distributed with known marginal density fZ , and

fZ ∈ FC for some sufficiently large C.

An infinitely differentiable complex-valued function f on R is called a Schwartz

function if for all non-negative integers i and j, there exist positive constants Ci,j

such that

|d
if(x)

dxi
| ≤ Ci,j

(1 + |x|j)
, ∀x ∈ R.

The set of all Schwartz functions will be denoted by S(R). Define η : R → R by

η(t) =


[
∫ 1

−1
e−1/(1−s2)ds]e−1/(1−t2) if |t| < 1,

0 if |t| ≥ 1.

(2.8)
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It is easily seen that η ∈ S(R). Next let α > 1 and I[−b,b](t) denote the indicator

function of the interval [−b, b]. Define

ψ(t) = I[−b,b] ∗ η(t) =

∫ b

−b

η(t− s)ds, ∀t ∈ R,

where ∗ denotes the convolution operation between two functions. We observe that

ψ ∈ S(R), 0 ≤ ψ(t) ≤ 1 for all t ∈ R and

ψ(t) =


1 if |t| ≤ b− 1,

0 if |t| ≥ b+ 1.

(2.9)

Next define

ψ̌(x) =
1

2π

∫ ∞

−∞
e−itxψ(t)dt, ∀x ∈ R.

ψ̌(x) : R → R is the inverse Fourier transform of ψ and it follows from Proposi-

tion 2.2.11 of Grafakos (2008) that ψ̌(x) ∈ S(R). In particular, we have ψ(0) =∫ ∞
−∞ ψ̌(t)dt = 1 since

ψ(t) =

∫ ∞

−∞
eitxψ̌(x)dx, ∀t ∈ R.

Define

h0(x) =
Cr

(1 + x2)r
, ∀x ∈ R,

where r > 1/2 and Cr are constants such that
∫ ∞
−∞ h0(x)dx = 1. Let ω0 ∈ (0, 1] be

a constant. Now choose a0 and δn to be suitably small, strictly positive constants

such that infx∈R{(1 − ω0)h0(x) + a0ψ̌(x/δn)} ≥ 0. This is indeed possible since
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ψ̌ ∈ S(R) and hence decreases to 0 at a super polynomial rate while h0 decreases

to 0 at the exact rate of |x|−2r as |x| → ∞. Define the cumulative distribution

functions

F (θ) = ω0I{θ≥0} + (1− ω0)

∫ θ

−∞
h0(x)dx,

F ∗(θ) = ω∗0I{θ≥0} + (1− ω0)

∫ θ

−∞
h0(x)dx+ a0

∫ θ

−∞
ψ̌(x/δn)dx,

where ω0 − ω∗0 = a0δn. Let Θ,Θ∗ be random variables with distribution functions

F, F ∗ respectively and Z,Z∗ be random variables each with density fZ . We further

assume that Θ, Z are independent and Θ∗, Z∗ are independent. Define X = Θ+Z

and X∗ = Θ∗ +Z∗ and let g, g∗ denote the density functions of X,X∗ respectively.

Notice that g, g∗ ∈ FC for a sufficiently large C and FC is a convex set. In addition,

ω0 as a function of g (see (2.2)) is linear and ω0−ω∗0 = a0δn. By Theorems 2.1 and

3.1 of Donoho and Liu (1991), lower bounds can be obtained by finding the largest

δn such that the square of the Hellinger distance between g and g∗ is of order O( 1
n
).

Since the square of the Hellinger distance is dominated by χ2 divergence, we want

to find the largest δn such that the χ2 divergence

∫
R

[g(x)− g∗(x)]2

g(x)
dx ≤ c

n
, (2.10)

for some constant c > 0. The following two lemmas will be used in proving Theorem

2.5.
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Lemma 2.1. With the above notation, there exists a constant Cg > 0 such that

g(x) ≥ Cg

(1 + x2)r
, ∀x ∈ R.

Proof. First let a > 0 be a constant such that
∫ a

0
fZ(t)dt > 0. Notice that g is a

strictly positive continuous function on R. It suffices to assume that x ≥ a. By

the definition of h0 we have

g(x) = ω0fZ(x) + (1− ω0)h0 ∗ fZ(x)

≥ (1− ω0)

∫ a

0

h0(x− s)fZ(s)ds

≥
(1− ω0)Cr

∫ a

0
fZ(s)ds

(1 + x2)r
.

Lemma 2.2. Suppose fz = O(|x|−κ) as |x| → ∞ for some constant κ > 1. Let

0 < δn, κ0 < 1 be constants such that κ − κ0 > 1. Then there exist constants M

and CM such that

|δnfZ(δnx)−
∫ ∞

−∞
ψ̌(x− y)δnfZ(δny)dy| ≤

CM

|δnx|κ−κ0
, ∀|δnx| ≥M.

Proof. Since ψ̌ ∈ S(R), we have |ψ̌(x)| = O(|x|−m0) as |x| → ∞ for some constant

m0 such that κ− κ0 > m0κ0. Consequently,

|
∫ ∞

−∞
ψ̌(x− y)δnfZ(δny)dy|

≤ |
∫
|x−y/δn|≤|x|κ0

ψ̌(x− y/δn)fZ(y)dy|+ |
∫
|x−y/δn|>|x|κ0

ψ̌(x− y/δn)fZ(y)dy|
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≤ ||ψ̌||∞
∫
|δnx|−|δnx|κ0≤y≤|δnx|+|δnx|κ0

fZ(y)dy + O(|x|−m0κ0)

= O(|x|−(κ−κ0)) as |δnx| → ∞.

The following theorem provides lower bounds for the minimax convergence rate

when the noise density function is supersmooth.

Theorem 2.5. Let X1, ..., Xn be as in Section 2.1 with the noise random variables

Z1, ..., Zn independent and identically distributed. Suppose fZ is supersmooth of

order β and fZ(x) = O(|x|−κ) as |x| → ∞ for some constant κ > 1. Then for any

estimator ω̂0 based on X1, ..., Xn, we have

sup
fX∈FC

EfX
|ω̂0 − ω0| > c(log n)−1/β,

for some constant c > 0 whenever C is sufficiently large.

Proof. We observe that

∫
R

[g(x)− g∗(x)]2

g(x)
dx

=

∫
R

[(ω0 − ω∗0)fZ(x)− a0

∫ ∞
−∞ ψ̌((x− y)/δn)fZ(y)dy]2

g(x)
dx

=

∫
R

[(ω0 − ω∗0)fZ(x)− a0δn
∫ ∞
−∞ ψ̌(xδ−1

n − y)fZ(δny)dy]
2

g(x)
dx

= a2
0δn

∫
R

[δnfZ(δnx)−
∫ ∞
−∞ ψ̌(x− y)δnfZ(δny)dy]

2

g(δnx)
dx



2.5 Lower bounds 34

Using Lemmas 2.1 and 2.2 and taking a constant Mn ≥ (M ∨ 1), the last term of

the above equations is less than or equal to

a2
0δn
Cg

∫ ∞

−∞
(1 + |δnx|2)r[δnfZ(δnx)−

∫ ∞

−∞
ψ̌(x− y)δnfZ(δny)dy]

2dx

≤ a2
0δn
Cg

∫
|δnx|≥Mn

C2
M(1 + |δnx|2)r

|δnx|2(κ−κ0)
dx

+
a2

0δn(1 +M2
n)r

Cg

∫ ∞

−∞
[δnfZ(δnx)−

∫ ∞

−∞
ψ̌(x− y)δnfZ(δny)dy]

2dx

≤ a2
0δn(1 +M2

n)r

Cg

∫ ∞

−∞
[δnfZ(δnx)−

∫ ∞

−∞
ψ̌(x− y)δnfZ(δny)dy]

2dx

+
2ra2

0C
2
M

Cg

∫
|x|≥Mn

1

|x|2(κ−κ0−r)
dx

≤ a2
0δn(1 +M2

n)r

Cg

∫ ∞

−∞
[δnfZ(δnx)−

∫ ∞

−∞
ψ̌(x− y)δnfZ(δny)dy]

2dx

+
2r+1a2

0C
2
M

Cg[2(κ− κ0 − r)− 1]M
2(κ−κ0−r)−1
n

=
a2

0δn(1 +M2
n)r

2πCg

∫ ∞

−∞
|ϕfZ

(
t

δn
)− ψ(t)ϕfZ

(
t

δn
)|2dt

+
2r+1a2

0C
2
M

Cg[2(κ− κ0 − r)− 1]M
2(κ−κ0−r)−1
n

≤ a2
0δn(1 +M2

n)r

πCg

∫ ∞

b−1

|ϕfZ
(
t

δn
)|2dt+

2r+1a2
0C

2
M

Cg[2(κ− κ0 − r)− 1]M
2(κ−κ0−r)−1
n

.

where in the last two steps we have used Parseval’s identity and (2.9). Choose

constants b > 1, κ0 > 0, r > 1/2 such that 2(κ − κ0 − r) − 1 > 0 and (b −

1)β − r > 0. Now let Mn = e1/(δβ
nγ) and δn = (c/ log n)1/β for some constant

0 < c < γ−1 min{2(b− 1)β − 2r, 2(κ− κ0 − r)− 1}. Then

2r+1a2
0C

2
M

Cg[2(κ− κ0 − r)− 1]M
2(κ−κ0−r)−1
n

= o(1/n), as n→∞.
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It follows from (2.5) that

a2
0δn(1 +M2

n)r

πCg

∫ ∞

b−1

|ϕfZ
(
t

δn
)|2dt

≤ 2rM2r
n a

2
0d

2
1δ

1−2β1
n

πCg

∫ ∞

b−1

t2β1e−2tβ/(δβ
nγ)dt

≤ 2rM2r
n a

2
0d

2
1δ

1−2β1
n e−2(b−1)β/(δβ

nγ)

πCg

∫ ∞

b−1

t2β1e−2[tβ−(b−1)β ]/(δβ
nγ)dt

= o(1/n),

as n → ∞. Hence we conclude that (2.10) holds. Notice that g, g∗ ∈ FC for a

sufficiently large C and FC is a convex set. In addition, ω0 as a function of g (see

(2.2)) is linear and ω0 − ω∗0 = a0δn. Since the Hellinger distance is dominated by

the χ2 divergence [as in (2.10)], it follows from Theorems 2.1 and 3.1 of Donoho

and Liu (1991) that

inf
ω̂0

sup
fX∈FC

EfX
|ω̂0 − ω0| > c(log n)−1/β,

for some constant c > 0.

The following theorem provides lower bounds for the minimax convergence rate

when the noise density function is ordinary smooth with order β > 1/2.

Theorem 2.6. Let X1, ..., Xn be as in Section 2.1 with the noise random variables

Z1, ..., Zn independent and identically distributed. Suppose fZ is ordinary smooth

of order β > 1/2 and |djϕfZ
(t)/dtj(t)| < cj|t|β−j as |t| → ∞ for j = {0, 1, 2} and
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some constants c0, c1, c2. Then for any estimator ω̂0 based on X1, ..., Xn, we have

sup
fX∈FC

EfX
|ω̂0 − ω0| > cn−1/(2β+1),

for some constant c > 0 whenever C is sufficiently large .

Proof. Choose 1/2 < r < 3/2.

∫ +∞

−∞

[g(x)− g∗(x)]2

g(x)

= a2
0δn

∫ +∞

−∞

[δnfZ(xδn)−
∫ ∞
−∞ ψ̆(x− y)δnfZ(δny)dy]

2

g(δnx)
dx

= a2
0δn(

∫
|δnx|>1

+

∫
|δnx|≤1

)
[δnfZ(xδn)−

∫ ∞
−∞ ψ̆(x− y)δnfZ(δny)dy]

2

g(δnx)
dx.

From Lemma 2.1 we know that g is a continuous function and does not vanish

in |x| ≤ 1. Let C1 = max|x|≤1 g
−1(x). By Parseval’s identity and (2.6), we have

I1 :=

∫
|δnx|≤1

[δnfZ(xδn)−
∫ ∞
−∞ ψ̆(x− y)δnfZ(δny)dy]

2

g(δnx)
dx

≤ C1

2π

∫ +∞

−∞
|ϕfZ

(t/δn)(1− ψ(t))|2dt

≤ C1

π

∫ +∞

b−1

|ϕfZ
(t/δn)|2dt

= O(δ2β
n ).

Define

φδn(t) =
d2(ϕfZ

(t/δn)(1− ψ(t)))

dt2
.
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Writing ϕ
(j)
fZ

(t) = djϕfZ
(t)/dtj and ψ(j)(t) = djψ(t)/dtj. From the definition of

ψ(t), we know that ψ(j)(t) is bounded for j = 0, 1, 2, and notice that ψ(j)(t) = 0

for |t| ≥ α+ 1, j = 1, 2, we have, for t ≥ α− 1 and δn small enough, there exists a

constant C2 > 0, such that

|φδn(t)| = |ϕ(2)
fZ

(t/δn)
1

δ2
n

(1− ψ(t))− ϕfZ
(t/δn)ψ(2)(t)− 2ϕ

(1)
f (t/δn)

1

δn
ψ(1)(t)|

≤ C2δ
β
nt

−β−2.

By the Fourier inversion formula and (2.6) we have:

|δnfZ(xδn)−
∫ ∞

−∞
ψ̆(x− y)δnfZ(δny)dy|

= | 1

2π

∫ +∞

−∞
exp(−itx)ϕfZ

(t/δn)(1− ψ(t))dt|

≤ | 1
π

∫ +∞

b−1

exp(−itx)ϕfZ
(t/δn)(1− ψ(t))dt|.

Consequently

|δnfZ(xδn)−
∫ ∞

−∞
ψ̆(x− y)δnfZ(δny)dy|2

≤ | 1
π

∫ +∞

b−1

exp(−itx)ϕfZ
(t/δn)(1− ψ(t))dt|2

= | 1

−x2π

∫ +∞

α−1

exp(−ixt)φδn(t)dt|2

= (πx2)−2δ2β
n |

∫ +∞

b−1

exp(−ixt)δ−β
n φδn(t)dt|2.

By Lemma 2.1, we have:

I2 :=

∫
|δnx|>1

[δnf(xδn)−
∫ ∞
−∞ ψ̆(x− y)δnf(δny)dy]

2

g0(δnx)
dx
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≤
∫
|δnx|>1

(1 + δ2
nx

2)r

Cg0

(πx2)−2δ2β
n |

∫ +∞

α−1

exp(−ixt)δ−β
n φδn(t)dt|2dx

≤ 2rδ2r+2β
n

Cg0π
2

∫
|δnx|>1

x2r−4|
∫ +∞

α−1

exp(−ixt)δ−β
n φδn(t)dt|2dx

≤ 2rδ2r+2β
n

Cg0π
2

∫
|δnx|>1

x2r−4|
∫ +∞

α−1

C2t
−β−2dt|2dx

= O(δ2β+3
n ).

By choosing δn = dn−1/(2β+1) for some constant d > 0, we have,

∫ +∞

−∞

[g0(x)− gn(x)]2

g0(x)
= a2

0δn(I1 + I2) = O(δ2β+1
n ) = O(n−1).

When C is large enough, g, g∗ ∈ FC , and we conclude from Theorems 2.1 and 3.1

of Donoho and Liu (1991) that

inf
ω̂0

sup
fX∈FC

EfX
|ω̂0 − ω0| > cn−1/(2β+1),

for some constant c > 0.

2.6 A method-of-moments estimator when fZ is

unknown

LetX1, ..., Xn be as in Section 2.3. In this section we assume that fZ is unknown

but we assume that there is an independent sample of (pure) noise observations
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Y1, ..., Ym. In Section 2.3, we use M̂q to estimate Mq. Since now fZ is unknown,

we shall estimate Mq using the (q+ 1)× (q+ 1) matrix M̌q whose (j, k)th element

is given by

(M̌q)jk =
n−1

∑n
i=1 e

−i(j−k)Xi

m−1
∑m

l=1 e
−i(j−k)Yl

, ∀1 ≤ j, k ≤ q + 1.

M̌q is a Hermitian matrix and hence its eigenvalues are real numbers. We propose

as an estimator of ω0,

ω̌0 =


1, if (λ1(M̌q)− 1)/q > 1,

(λ1(M̌q)− 1)/q, if 0 ≤ (λ1(M̌q)− 1)/q ≤ 1,

0, if (λ1(M̌q)− 1)/q < 0,

(2.11)

for a sufficiently large integer q.

Proposition 2.4. Let ω̌0 be as in (2.11) and α be as in (2.3) such that, for a

certain constant c0 > 0, α(l) ≤ e−c0l for all integers l ≥ 1. Then there exists a

constant C0 > 0 depending only on c0 such that for all m ≥ 4,

E|ω̌0 − ω0| ≤
∑ν

i=1 ωi

q
+ 4

q∑
j=1

{ [1 + 16
∑∞

l=1 α(l)]
1
2

q
√
n|ϕfZ

(j)|
+

[1 + 16
∑∞

l=1 α(l)]
1
2

q
√
m|ϕfZ

(j)|

+ exp[−C0m|ϕfZ
(j)|2

8(4 + log2m)
]
}

+
Ω

q
+

1−
∑ν

k=0 ωk

q
H,

where

H = max{2π sup
θ∈[0,2π)

∞∑
j=−∞

h(θ + 2πj)− 1, 1− 2π inf
θ∈[0,2π)

∞∑
j=−∞

h(θ + 2πj)}.

If in addition we have fX ∈ U , then for all m ≥ 4,

E|ω̌0 − ω0| ≤ 4

q∑
j=1

{ [1 + 16
∑∞

l=1 α(l)]
1
2

q
√
n|ϕfZ

(j)|
+

[1 + 16
∑∞

l=1 α(l)]
1
2

q
√
m|ϕfZ

(j)|
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+ exp[−C0m|ϕfZ
(j)|2

8(4 + log2m)
]
}
.

Proof. Similar to (2.7) in the proof of Proposition 2.2, we have

|ω̌0 − ω0| ≤
∑ν

i=1 ωi

q
+

2

q

q+1∑
k=1

|(M̌q −Mq)q+1,k|+
Ω

q
+

1−
∑ν

k=0 ωk

q
H. (2.12)

Also

q∑
k=1

|(M̌q −Mq)q+1,k|I
{min1≤j≤q |

m−1 ∑m
l=1

e−ijYl

Ee−ijYl
|> 1

2
}

= I
{min1≤j≤q |

m−1 ∑m
l=1

e−ijYl

Ee−ijY1
|> 1

2
}

×
q∑

j=1

|(n
−1

∑n
i=1 e

−ijXi)(Ee−ijY1)− (m−1
∑m

l=1 e
−ijYl)(Ee−ijX1)

(m−1
∑m

l=1 e
−ijYl)(Ee−ijY1)

|

≤ I
{min1≤j≤q |

m−1 ∑m
l=1

e−ijYl

Ee−ijY1
|> 1

2
}

q∑
j=1

[
|(n

−1
∑n

i=1 e
−ijXi − Ee−ijX1)(Ee−ijY1))

(m−1
∑m

l=1 e
−ijYl)(Ee−ijY1)

|

+|(m
−1

∑m
l=1 e

−ijYl − Ee−ijY1)(Ee−ijX1))

(m−1
∑m

l=1 e
−ijYl)(Ee−ijY1)

|
]

≤ 2

q∑
j=1

[
|
∑n

i=1(e
−ijXi − Ee−ijX1)

nEe−ijY1
|+ |

∑m
l=1(e

−ijYl − Ee−ijY1)

mEe−ijY1
|
]
. (2.13)

We recall that in the proof of Proposition 2.2 we have showed that

E| 1
n

n∑
i=1

(e−ikXi − Ee−ikXi)|2 ≤ 1

n
[1 + 16

∞∑
l=1

α(l)]. (2.14)

Since Y1, ..., Ym are strongly mixing with α(l) ≤ e−c0l for all integers l ≥ 1, we

observe from Theorem 1 of Merlevede et al. (2009) that there exists a constant

C0 > 0 depending on c0 only such that for all m ≥ 4,

P ( min
1≤j≤q

|m
−1

∑m
l=1 e

−ijYl

Ee−ijYl
| ≤ 1

2
) < 4

q∑
j=1

exp[−C0m|Ee−ijY1|2

8(4 + log2m)
]. (2.15)
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It follows from (2.12), (2.13), (2.14) and (2.15) that

E|ω̌0 − ω0| ≤ P ( min
1≤j≤q

|m
−1

∑m
l=1 e

−ijYl

Ee−ijYl
| ≤ 1

2
)

+E

{
E|ω̌0 − ω0|I

{min1≤j≤q |
m−1 ∑m

l=1
e−ijYl

Ee−ijYl
|> 1

2
}

}

< 4

q∑
j=1

exp[−C0m|Ee−ijY1 |2

8(4 + log2m)
] +

∑ν
i=1 ωi

q
+

Ω

q
+

1−
∑ν

k=0 ωk

q
H

+
4

q

q∑
j=1

{
|
∑n

i=1(e
−ijXi − Ee−ijX1)

nEe−ijY1
|+ |

∑m
l=1(e

−ijYl − Ee−ijY1)

mEe−ijY1
|
}

≤
∑ν

i=1 ωi

q
+ 4

q∑
j=1

{ [1 + 16
∑∞

l=1 α(l)]
1
2

q
√
n|ϕfZ

(j)|
+

[1 + 16
∑∞

l=1 α(l)]
1
2

q
√
m|ϕfZ

(j)|

+ exp[−C0m|ϕfZ
(j)|2

8(4 + log2m)
]
}

+
Ω

q
+

1−
∑ν

k=0 ωk

q
H.

This proves the first statement of Proposition 2.4. If fX ∈ U , then

2π
∞∑

j=−∞

h(θ + 2πj) = 1, ∀ θ ∈ R,

which implies from Proposition 2.1 that

E|ω̌0 − ω0| ≤ 2

q

q+1∑
k=1

E|(M̌q −Mq)q+1,k|,

and the rest of the argument is as before.

The following two theorems establish upper bounds to the minimax convergence

rate of ω̌0 with respect to fX ∈ FC and fZ suitably smooth. The proof of Theorem

2.7 is almost the same as the proof of Theorem 2.2 and the proof of Theorem 2.8

is almost the same as the proof of Theorem 2.3.
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Theorem 2.7. Let ω̌0 be as in (2.11)and α be as in (2.3) and there exists a constant

c0 > 0 such that α(l) ≤ e−c0l for all integers l ≥ 1. Suppose fZ is supersmooth of

order β, ϕfZ
(k) 6= 0 for all k ∈ Z. Then by choosing q = b(c log n)

1
β c for some

constant 0 < c < γ/2, we have, for any C > 0,

sup
fX∈FC

EfX
|ω̌0 − ω0| = O(

1

log1/β(m ∧ n)
), as m ∧ n→∞.;

By choosing q to be a constant, we have

sup
fX∈U

EfX
|ω̌0 − ω0| = O(

1√
m ∧ n

), as m ∧ n→∞.

Theorem 2.8. Let ω̌0 be as in (2.11)and α be as in (2.3) and there exists a constant

c0 > 0 such that α(l) ≤ e−c0l for all integers l ≥ 1. Suppose fZ is ordinary smooth

of order β, ϕfZ
(k) 6= 0 for all k ∈ Z. Then by choosing q = bcn1/(2β+2)c for some

constant c > 0, we have, for any C > 0,

sup
fX∈FC

EfX
|ω̌0 − ω0| = O(

1

(m ∧ n)1/(2β+2)
);

By choosing q to be a constant, we have

sup
fX∈U

EfX
|ω̌0 − ω0| = O(

1√
m ∧ n

), as m ∧ n→∞.

2.7 Numerical study

Assuming that the noise is unknown and we have two observation sequences: a

signal-plus-noise sequence X1, ..., Xn and a pure noise sequence Y1, ..., Ym. In this
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section, we perform a few simulation studies to investigate the performance and

properties of our estimator ω̌0 (see (2.11)). We also compare our estimator to the

following empirical Bayes estimators derived from the posterior median estimators

of signal sequences in Johnstone and Silverman (2004):

1) ωlap: Proportion of zeros in the empirical Bayes estimator of signals using

posterior median when a Laplace prior is used for the non-zero part of the signal

and the noise is Gaussian.

2) ωcauchy: Proportion of zeros in the empirical Bayes estimator of signals using

posterior median when a Cauchy prior is used for the non-zero part of the signal

and the noise is Gaussian.

To compute these two estimators, the R package “EbayesThresh” is used in

this simulation. The standard deviation of the noise is estimated from the pure

noise data Y1, ..., Ym.

Recall that in the discussion after we define ω̂0 in (2.4), a naive estimator

inspired by Proposition 2.1 is given by (λ1(M̂q)/(q+ 1) ∧ 1). Similarly, we define

ω̌∗0 = (λ1(M̌q)/(q + 1) ∧ 1). For a given q, we have

(i)if λ1(M̂q) ≥ q + 1, ω̌0 = ω̌∗0 = 1;

(ii)if λ1(M̂q) ≤ 1, ω̌0 = 0, ω̌∗0 ≤ 1
q+1

;
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(iii) else ω̌∗0 − ω̌0 = 1
q
(1− ω̌∗0).

Therefore, Theorems 2.7 and 2.8 are also true for ω̌∗0. In this simulation, we

also compute ω̌∗0, so that we can check whether there is any significant difference

between ω̌0 and ω̌∗0 in finite sample simulations.

As in Section 2.1, Xi = Θi + Zi, 1 ≤ i ≤ n, where n is the sample size. For

the true signals Θ1, ...,Θn, we set ω0n of them to be zero and generate the nonzero

Θi’s using different types of prior distributions given below:

P1. Θ = 3;

P2. Θ = 5;

P3. N(0,10);

P4. 10 exp(1);

P5. N(2,1);

P6. exp(0.25);

P7. U(1, 1 + 2π).

In models P1−P4, the signal strength is relatively strong in that most of the

nonzero θi’s are 3 times of the standard deviation of the noise away from 0, while
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in models P5−P7, the generated nonzero θi’s are closer to zero.

We generate Zi using the following different types of distributions:

N1. N(0,1);

N2. t5/
√

5/3, where dividing by
√

5/3 is to normalize the noise such that

V ar(Zi) = 1;

N3. SN(0, 1, 1)/
√

1− 1/π: skewed normal with location = 0, scale = 1, shape

= 1, where deviding by
√

1− 1/π is to normalize the noise such that V ar(Zi) = 1;

In this simulation, we set the sample size n = 1000, and the sample size of the

pure noise m = 2000. We consider three different types of distributions (N1−N3)

for the noise. For each type of noise, we set the proportion of zeros in the signals

(ω0) to be 0.9, 0.75 and 0.5, and generate the nonzero signals according to the seven

types of prior distributions P1 − P7. Once ω̌0 is evaluated, let k be the integer

satisfying (k− 1)/n < ω̌0 ≤ k/n. We estimate the set Ξ = {1 ≤ j ≤ n : θj = 0} by

Ξ̂ = {1 ≤ j ≤ n : |Xj| ≤ X(k)}, where X(1) ≤ ... ≤ X(n) are the order statistics of

|X1|, ..., |Xn|. The mean and standard deviation of the mean over 100 replications

of the following four quantities are computed:

(i) l1-loss: |estimator− ω0|;
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(ii) Error1: number of times of estimating zero to be nonzero. For our estimator

ω̌0, Error1= #{1 ≤ j ≤ n : j ∈ Ξ, j /∈ Ξ̂};

(iii) Error2: number of times of estimating nonzero to be zero. For our estimator

ω̌0, Error2= #{1 ≤ j ≤ n : j /∈ Ξ, j ∈ Ξ̂}.

(iv) Signal-l1-loss. In addition to comparing the estimate of ω0, we also compare

the L1 loss of the signal sequence defined as: Signal-l1-loss= 1
n

∑n
i=1 |θ̂i − θi|.

For the empirical Bayes method, we use the estimators θ̂ = (θ̂1, ..., θ̂n) derived

from posterior median. In our case, we use a naive estimator by thresholding

the empirical Bayes estimator using posterior mean under Laplace prior. More

precisely, let θ̌ = (θ̌1, ..., θ̌n) be the empirical Bayes estimator using posterior mean.

Once an estimate ω̌0 is obtained, let k be the integer satisfying (k−1)/n < ω̌0 ≤ k/n

and let θ̌(1) ≤ θ̌(2) ≤ ... ≤ θ̌(n) be the ordered statistics of |θ̌1|, ..., |θ̌n|. We define

the naive estimator θ̂ = (θ̂1, ..., θ̂n) as:

θ̂i = θ̌1I{|θ̌i|≥θ̌(k)}, i = 1, ..., n. (2.16)

One of the important problem in simulation or in practice would be how to

choose a proper q? Write the estimator for a corresponding q as ω̌q
0. We choose q

in the following way:

Step 1. Normalize the data by dividing X1, ..., Xn, Y1, ..., Ym by 10σY , where
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σY is the sample standard deviation of Y1, ..., Ym. We use the same notation for

the normalized data.

Step 2. Let u = 10
√

log n. For each i = (1 ∧ (u − 10)), ...., u + 10, computer

ω̌
1∧(u−10)
0 , ..., ω̌u+10

0 and let ki be the integer satisfying (ki − 1)/n < ω̌i
0 ≤ ki/n. Let

X(1) ≤ X(2) ≤ ... ≤ X(n) be the ordered statistics of |X1|, ..., |Xn|. Then define:

Ξ̂i = {1 ≤ i ≤ n : |Xi| ≤ X(ki)}.

Let Fi be the empirical cumulative distribution function of {Xj, j ∈ Ξ̂i}, for i =

(1∧ (u− 10)), ...., u+ 10 and FY be the empirical cumulative distribution function

of Y1, ..., Ym. Define the Kolmogorov-Smirnov distance between {Xj, j ∈ Ξ̂i} and

Y1, ..., Ym as:

Di = sup
x∈R

|Fi(x)− FY (x)|, i = (1 ∧ (u− 10)), ...., u+ 10.

Step 3. Choose q such that Dq is the minimum among D(1∧(u−10)), ...., Du+10.

The reason for defining u in Step 2 is to make the computation more efficient

when n is large. If n is not large, after normalizing the data, we can compute

ω̌1
0, ..., ω̌

b
√

nc
0 in Step 2 instead.

Algorithms in choosing q and computation of quantities such as Error1 and

Error2 for ω̌∗0 are similar as ω̌0.

Conclusions
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• In terms of the l1-loss, ω̌0 performs well for all the cases simulated while the

empirical Bayes estimators based on posterior median only do well for sparse cases

(ω0=0.9 and 0.75 in some cases).

• ω̌0 and ω̌∗0 are very close as expected. There are no significant differences

between these two estimators.

• Notice that when ω0 = 0.9, the empirical Bayes estimators perform quite well

under normal or t noise. However, in the skewed normal noise case, they do not

perform very well. In addition, in the skewed noise case, the l1-loss of the empirical

Bayes estimators is larger. On the other hand, ω̌0 is relatively robust to different

types of noise distributions.

• The Signal-l1-loss of the naive thresholding estimator based on ω̌0 (see (2.16))

is smaller when ω is small (ω = 0.75, 0.5.)

• In terms of Error1 and Error2, when ω = 0.75, 0.5, |Error1− Error2| of ω̌0

and ω̌∗0 is relatively smaller, implying that ω̌0 and ω̌∗0 are relatively less biased than

the empirical Bayes estimators. In addition, when ω = 0.75, 0.5, Error1 + Error2

values of ω̌0 and ω̌∗0 are also slightly smaller relatively to Error1 + Error2 values of

the empirical Bayes estimators.
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ω0 ω̌0 ω̌∗0 ωlap ωcauchy

0.9

l1-loss(sd) 0.021(0.002) 0.020(0.002) 0.019(0.001) 0.029(0.001)

Error1(sd) 26.3(1.9) 25.5(2.0) 12.0(0.5) 8.3(0.4)

Error2(sd) 24.1(0.9) 24.7(0.9) 31.5(0.8) 37.0(0.8)

Signal-l1-loss(sd) 0.176(0.002) 0.176(0.002) 0.170(0.002) 0.181(0.002)

0.75

l1-loss(sd) 0.017(0.001) 0.015(0.001) 0.052(0.002) 0.042(0.002)

Error1(sd) 38.7(1.3) 37.1(1.5) 72.0(1.3) 64.6(1.2)

Error2(sd) 33.9(0.8) 34.9(0.8) 20.2(0.4) 23.0(0.5)

Signal-l1-loss(sd) 0.340(0.002) 0.340(0.002) 0.342(0.002) 0.358(0.002)

0.5

l1-loss(sd) 0.018(0.001) 0.017(0.001) 0.468(0.003) 0.5(0)

Error1(sd) 46.8(1.3) 39.3(1.0) 468.1(3.1) 500(0)

Error2(sd) 49.1(1.2) 55.4(0.6) 0.2(<0.1) 0(0)

Signal-l1-loss(sd) 0.555(0.001) 0.554(0.001) 0.692(0.003) 0.702(0.001)

Table 2.1 Simulation results under the model P1 + N1:Nonzero Θi = 3 and Zi ∼

N(0, 1).
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ω0 ω̌0 ω̌∗0 ωlap ωcauchy

0.9

l1-loss(sd) 0.022(0.001) 0.019(0.001) 0.027(0.001) 0.024(0.001)

Error1(sd) 18.1(1.7) 14.9(1.7) 28.1(0.7) 24.0(0.6)

Error2(sd) 4.9(0.8) 6.3(1.0) 0.2(<0.1) 0.3(<0.1)

Signal-l1-loss(sd) 0.132(0.002) 0.132(0.002) 0.129(0.001) 0.121(0.001)

0.75

l1-loss(sd) 0.012(0.001) 0.016(0.001) 0.151(0.002) 0.180(0.002)

Error1(sd) 7.2(0.6) 7.0(0.7) 151.0(1.9) 179.3(2.1)

Error2(sd) 7.2(0.9) 10.7(1.2) 0(0) 0(0)

Signal-l1-loss(sd) 0.255(0.002) 0.265(0.002) 0.335(0.002) 0.323(0.001)

0.5

l1-loss(sd) 0.017(0.001) 0.018(0.001) 0.468(0.003) 0.5(0)

Error1(sd) 46.8(1.4) 39.2(1.1) 468.1(3.2) 500(0)

Error2(sd) 49.1(1.2) 55.4(0.6) 0.2(<0.1) 0(0)

Signal-l1-loss(sd) 0.554(0.001) 0.556(0.001) 0.692(0.003) 0.701(0.001)

Table 2.2 Simulation results under the model P2 + N1:Nonzero Θi = 5 and Zi ∼

N(0, 1).
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ω0 ω̌0 ω̌∗0 ωlap ωcauchy

0.9

l1-loss(sd) 0.017(0.001) 0.015(0.001) 0.006(0.001) 0.007(0.001)

Error1(sd) 13.0(1.4) 9.8(0.8) 20.1(0.6) 14.0(0.4)

Error2(sd) 22.7(0.6) 23.0(0.6) 18.7(0.3) 19.9(0.4)

Signal-l1-loss(sd) 0.124(0.001) 0.122(0.001) 0.124(0.001) 0.116(0.001)

0.75

l1-loss(sd) 0.016(0.001) 0.022(0.001) 0.064(0.001) 0.068(0.002)

Error1(sd) 27.7(1.3) 23.3(1.4) 94.7(1.0) 98.5(1.2)

Error2(sd) 41.7(0.5) 43.1(0.5) 30.7(0.6) 30.5(0.6)

Signal-l1-loss(sd) 0.282(0.001) 0.278(0.001) 0.311(0.001) 0.288(0.001)

0.5

l1-loss(sd) 0.052(0.002) 0.065(0.002) 0.474(0.003) 0.5(0)

Error1(sd) 25.7(0.9) 18.9(1.0) 476.7(2.9) 500(0)

Error2(sd) 77.4(1.0) 84.4(1.4) 3.1(0.5) 0(0)

Signal-l1-loss(sd 0.505(0.002) 0.503(0.002) 0.690(0.002) 0.619(0.001)

Table 2.3 Simulation results under the model P3 + N1:Nonzero Θi ∼ N(0, 10) and

Zi ∼ N(0, 1).
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ω0 ω̌0 ω̌∗0 ωlap ωcauchy

0.9

l1-loss(sd) 0.017(0.001) 0.016(0.001) 0.006(0.001) 0.007(0.001)

Error1(sd) 15.9(1.8) 14.7(1.7) 18.8(0.6) 14.1(0.5)

Error2(sd) 21.8(0.5) 21.7(0.5) 19.5(0.4) 20.5(0.4)

Signal-l1-loss(sd) 0.125(0.002) 0.124(0.002) 0.125(0.001) 0.116(0.001)

0.75

l1-loss(sd) 0.023(0.001) 0.025(0.001) 0.056(0.002) 0.057(0.003)

Error1(sd) 26.2(1.3) 25.0(1.4) 89.6(2.0) 90.9(2.1)

Error2(sd) 45.7(0.8) 46.3(0.8) 33.6(0.5) 33.7(0.6)

Signal-l1-loss(sd) 0.277(0.003) 0.277(0.003) 0.306(0.002) 0.285(0.002)

0.5

l1-loss(sd) 0.046(0.002) 0.055(0.002) 0.459(0.003) 0.5(0)

Error1(sd) 34.5(1.5) 29.8(1.4) 463.7(2.5) 500(0)

Error2(sd) 80.8(0.8) 84.8(0.9) 4.9(0.4) 0(0)

Signal-l1-loss(sd) 0.511(0.003) 0.509(0.002) 0.680(0.002) 0.619(0.002)

Table 2.4 Simulation results under the model P4 + N1:Nonzero Θi ∼ 10 exp(1) and

Zi ∼ N(0, 1).
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ω0 ω̌0 ω̌∗0 ωlap ωcauchy

0.9

l1-loss(sd) 0.034(0.002) 0.035(0.002) 0.068(0.001) 0.074(0.001)

Error1(sd) 24.9(1.5) 24.2(1.5) 4.5(0.3) 2.5(0.3)

Error2(sd) 58.2(0.9) 58.3(0.9) 72.1(0.6) 76.4(0.5)

Signal-l1-loss(sd) 0.155(0.001) 0.154(0.001) 0.152(0.001) 0.157(0.001)

0.75

l1-loss(sd) 0.063(0.003) 0.070(0.004) 0.121(0.002) 0.138(0.001)

Error1(sd) 55.1(2.6) 50.5(2.9) 20.3(0.8) 14.0(0.6)

Error2(sd) 113.0(1.8) 116.3(1.9) 140.9(1.1) 151.7(1.1)

Signal-l1-loss(sd) 0.334(0.002) 0.334(0.002) 0.331(0.002) 0.345(0.002)

0.5

l1-loss(sd) 0.109(0.004) 0.116(0.004) 0.079(0.004) 0.086(0.004)

Error1(sd) 68.1(2.0) 64.9(2.0) 84.8(2.2) 81.6(2.5)

Error2(sd) 176.9(1.9) 180.3(2.0) 161.4(2.3) 164.7(2.7)

Signal-l1-loss(sd) 0.567(0.002) 0.557(0.002) 0.559(0.002) 0.580(0.002)

Table 2.5 Simulation results under the model P5 + N1:Nonzero Θi ∼ N(2, 1) and

Zi ∼ N(0, 1).
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ω0 ω̌0 ω̌∗0 ωlap ωcauchy

0.9

l1-loss(sd) 0.030(0.002) 0.031(0.002) 0.034(0.001) 0.041(0.001)

Error1(sd) 16.0(1.3) 15.6(1.3) 10.5(0.5) 6.6(0.3)

Error2(sd) 44.7(0.9) 45.1(0.9) 44.8(0.4) 47.2(0.5)

Signal-l1-loss(sd) 0.126(0.001) 0.126(0.001) 0.120(0.001) 0.118(0.001)

0.75

l1-loss(sd) 0.060(0.003) 0.062(0.003) 0.048(0.001) 0.057(0.001)

Error1(sd) 33.7(1.6) 32.4(1.7) 41.5(0.7) 35.1(0.7)

Error2(sd) 93.5(1.2) 94.6(1.2) 89.9(1.0) 92.6(0.9)

Signal-l1-loss(sd) 0.279(0.002) 0.278(0.002) 0.280(0.001) 0.273(0.001)

0.5

l1-loss(sd) 0.128(0.003) 0.133(0.003) 0.093(0.004) 0.168(0.005)

Error1(sd) 39.4(2.0) 37.5(1.8) 181.9(2.7) 239.5(4.0)

Error2(sd) 167.5(1.6) 170.1(1.7) 90.6(1.2) 71.3(1.5)

Signal-l1-loss(sd) 0.498(0.002) 0.497(0.003) 0.530(0.002) 0.523(0.002)

Table 2.6 Simulation results under the model P6 + N1:Nonzero Θi ∼ exp(0.25) and

Zi ∼ N(0, 1).
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ω0 ω̌0 ω̌∗0 ωlap ωcauchy

0.9

l1-loss(sd) 0.015(0.001) 0.015(0.001) 0.007(<0.001) 0.011(0.001)

Error1(sd 22.6(1.4) 21.3(1.4) 17.8(0.4) 13.4(0.4)

Error2(sd) 21.5(0.6) 22.0(0.6) 22.2(0.5) 24.2(0.5)

Signal-l1-loss(sd) 0.143(0.001) 0.143(0.001) 0.139(0.001) 0.136(0.001)

0.75

l1-loss(sd) 0.021(0.001) 0.026(0.002) 0.052(0.002) 0.051(0.002)

Error1(sd) 29.5(1.5) 24.6(1.4) 83.7(1.4) 83.1(1.5)

Error2(sd) 46.3(0.6) 49.0(0.7) 31.8(0.5) 32.0(0.5)

Signal-l1-loss(sd) 0.309(0.002) 0.306(0.002) 0.326(0.002) 0.320(0.002)

0.5

l1-loss(sd) 0.035(0.002) 0.036(0.002) 0.470(0.003) 0.5(0)

Error1(sd) 42.8(1.9) 42.4(1.9) 473.0(2.3) 500(0)

Error2(sd) 71.7(1.2) 72.2(1.2) 2.3(0.2) 0(0)

Signal-l1-loss(sd) 0.554(0.002) 0.553(0.002) 0.697(0.002) 0.663(0.002)

Table 2.7 Simulation results under the model P7 + N1:Nonzero Θi ∼ U(1, 1 + 2π)

and Zi ∼ N(0, 1).
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ω0 ω̌0 ω̌∗0 ωlap ωcauchy

0.9

l1-loss(sd) 0.018(0.001) 0.017(0.001) 0.009(0.001) 0.013(0.001)

Error1(sd) 27.8(1.4) 26.3(1.4) 23.8(0.6) 19.0(0.6)

Error2(sd) 23.2(1.1) 24.2(1.0) 24.4(0.6) 30.3(0.7)

Signal-l1-loss(sd) 0.196(0.002) 0.196(0.002) 0.191(0.002) 0.202(0.002)

0.75

l1-loss(sd) 0.016(0.001) 0.016(0.001) 0.046(0.002) 0.041(0.002)

Error1(sd) 40.3(1.2) 38.2(1.2) 64.6(1.6) 60.8(1.7)

Error2(sd) 31.2(0.9) 33.5(0.9) 18.8(0.6) 20.4(0.7)

Signal-l1-loss(sd) 0.349(0.002) 0.349(0.002) 0.348(0.002) 0.369(0.002)

0.5

l1-loss(sd) 0.012(0.001) 0.011(0.001) 0.450(0.005) 0.5(0)

Error1(sd) 39.0(1.0) 22.6(0.7) 448.0(4.6) 500(0)

Error2(sd) 39.6(0.9) 46.4(0.6) 0.7(0.1) 0(0)

Signal-l1-loss(sd) 0.524(0.003) 0.525(0.003) 0.648(0.003) 0.669(0.002)

Table 2.8 Simulation results under the model P1 + N2:Nonzero Θi = 3 and Zi ∼

t5/
√

5/3.
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ω0 ω̌0 ω̌∗0 ωlap ωcauchy

0.9

l1-loss(sd) 0.018(0.001) 0.017(0.001) 0.035(0.001) 0.029(0.001)

Error1(sd) 11.1(1.2) 10.2(0.9) 36.7(1.1) 30.6(0.8)

Error2(sd) 9.1(0.8) 5.9(0.5) 1.3(0.3) 1.1(0.2)

Signal-l1-loss(sd) 0.142(0.002) 0.141(0.001) 0.150(0.002) 0.141(0.001)

0.75

l1-loss(sd) 0.015(0.001) 0.016(0.001) 0.114(0.003) 0.125(0.003)

Error1(sd) 16.4(1.4) 16.0(1.3) 114.7(1.7) 133.5(1.9)

Error2(sd) 9.5(0.8) 11.1(0.9) 0.4(0.1) 1.5(0.3)

Signal-l1-loss(sd) 0.269(0.002) 0.270(0.002) 0.330(0.002) 0.319(0.002)

0.5

l1-loss(sd) 0.012(0.001) 0.012(0.001) 0.5(0) 0.5(0)

Error1(sd) 8.7(0.6) 6.7(0.5) 500(0) 500(0)

Error2(sd) 10.1(0.7) 11.3(0.8) 0(0) 0(0)

Signal-l1-loss(sd) 0.474(0.002) 0.475(0.002) 0.679(0.002) 0.618(0.002)

Table 2.9 Simulation results under the model P2 + N2:Nonzero Θi = 5 and Zi ∼

t5/
√

5/3.
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ω0 ω̌0 ω̌∗0 ωlap ωcauchy

0.9

l1-loss(sd) 0.016(0.002) 0.014(0.002) 0.011(0.001) 0.008(0.001)

Error1(sd) 16.5(1.1) 12.3(1.0) 28.4(0.5) 25.2(0.7)

Error2(sd) 24.7(1.2) 25.8(1.1) 17.7(0.9) 16.3(0.3)

Signal-l1-loss(sd) 0.149(0.003) 0.148(0.003) 0.145(0.001) 0.139(0.001)

0.75

l1-loss(sd) 0.024(0.002) 0.026(0.002) 0.035(0.002) 0.036(0.002)

Error1(sd) 23.5(0.9) 19.9(0.8) 66.6(1.3) 68.1(1.4)

Error2(sd) 45.3(1.2) 49.8(1.3) 30.2(0.7) 30.0(0.7)

Signal-l1-loss(sd) 0.286(0.002) 0.287(0.002) 0.300(0.002) 0.290(0.002)

0.5

l1-loss(sd) 0.046(0.002) 0.049(0.002) 0.425(0.005) 0.500(0.001)

Error1(sd) 31.9(1.1) 28.8(1.0) 465.5(3.9) 499.8(0.3)

Error2(sd) 75.8(1.0) 79.9(0.9) 7.1(0.4) 0.02(0.01)

Signal-l1-loss(sd) 0.505(0.002) 0.502(0.002) 0.629(0.003) 0.585(0.002)

Table 2.10 Simulation results under the model P3 + N2:Nonzero Θi ∼ N(0, 10) and

Zi ∼ t5/
√

5/3.
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ω0 ω̌0 ω̌∗0 ωlap ωcauchy

0.9

l1-loss(sd) 0.020(0.001) 0.019(0.001) 0.013(0.001) 0.010(0.001)

Error1(sd) 19.6(1.2) 18.7(1.1) 29.6(1.0) 26.7(0.6)

Error2(sd) 26.8(0.9) 26.0(0.8) 20.1(0.4) 23.5(0.3)

Signal-l1-loss(sd) 0.150(0.002) 0.149(0.002) 0.153(0.002) 0.145(0.001)

0.75

l1-loss(sd) 0.023(0.002) 0.024(0.002) 0.030(0.002) 0.032(0.002)

Error1(sd) 29.4(1.3) 28.7(1.2) 64.7(1.2) 67.2(1.6)

Error2(sd) 46.5(0.7) 46.6(0.8) 39.1(0.6) 38.3(0.7)

Signal-l1-loss(sd) 0.290(0.002) 0.291(0.002) 0.303(0.002) 0.290(0.002)

0.5

l1-loss(sd) 0.045(0.002) 0.050(0.002) 0.393(0.005) 0.499(0.001)

Error1(sd) 36.7(1.3) 32.5(1.2) 401.3(4.6) 499.1(0.9)

Error2(sd) 79.9(1.2) 84.4(1.2) 11.1(0.5) 0.2(0.1)

Signal-l1-loss(sd) 0.511(0.002) 0.509(0.002) 0.617(0.003) 0.588(0.002)

Table 2.11 Simulation results under the model P4+N2:Nonzero Θi ∼ 10 exp(1) and

Zi ∼ t5/
√

5/3.
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ω0 ω̌0 ω̌∗0 ωlap ωcauchy

0.9

l1-loss(sd) 0.025(0.002) 0.026(0.002) 0.056(0.001) 0.063(0.001)

Error1(sd) 35.4(1.7) 36.0(1.7) 13.6(0.6) 10.9(0.5)

Error2(sd) 53.4(0.9) 53.2(0.9) 69.8(0.7) 74.8(0.7)

Signal-l1-loss(sd) 0.182(0.001) 0.181(0.001) 0.181(0.001) 0.184(0.001)

0.75

l1-loss(sd) 0.051(0.002) 0.055(0.003) 0.115(0.002) 0.130(0.002)

Error1(sd) 58.3(1.7) 56.6(1.9) 28.7(0.7) 24.5(0.8)

Error2(sd) 107.7(1.2) 110.0(1.3) 142.9(1.3) 152.6(1.5)

Signal-l1-loss(sd) 0.356(0.002) 0.356(0.002) 0.365(0.003) 0.380(0.002)

0.5

l1-loss(sd) 0.095(0.003) 0.099(0.003) 0.112(0.004) 0.122(0.005)

Error1(sd) 61.4(1.3) 60.2(1.2) 63.4(1.7) 60.7(1.5)

Error2(sd) 158.3(1.5) 160.6(1.6) 166.9(2.3) 171.5(3.3)

Signal-l1-loss(sd) 0.556(0.002) 0.555(0.02) 0.568(0.002) 0.601(0.002)

Table 2.12 Simulation results under the model P5 + N2:Nonzero Θi ∼ N(2, 1) and

Zi ∼ t5/
√

5/3.
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ω0 ω̌0 ω̌∗0 ωlap ωcauchy

0.9

l1-loss(sd) 0.024(0.002) 0.025(0.002) 0.024(0.001) 0.029(0.001)

Error1(sd) 24.8(1.7) 25.7(1.6) 21.9(0.7) 17.9(0.6)

Error2(sd) 43.7(0.8) 44.3(0.8) 46.3(0.7) 47.5(0.7)

Signal-l1-loss(sd) 0.152(0.002) 0.152(0.002) 0.151(0.002) 0.147(0.001)

0.75

l1-loss(sd) 0.049(0.003) 0.051(0.003) 0.048(0.002) 0.053(0.002)

Error1(sd) 46.2(1.7) 44.4(1.6) 45.2(1.3) 40.3(1.2)

Error2(sd) 96.7(1.3) 99.3(1.2) 94.3(1.0) 96.5(1.2)

Signal-l1-loss(sd) 0.301(0.002) 0.301(0.002) 0.301(0.002) 0.299(0.002)

0.5

l1-loss(sd) 0.089(0.003) 0.094(0.003) 0.043(0.003) 0.010(0.005)

Error1(sd) 51.1(1.3) 49.9(1.4) 124.7(2.4) 168.3(2.9)

Error2(sd) 152.9(1.4) 150.8(1.5) 102.1(1.8) 85.2(2.1)

Signal-l1-loss(sd) 0.503(0.002) 0.503(0.002) 0.513(0.002) 0.512(0.002)

Table 2.13 Simulation results under the model P6+N2:Nonzero Θi ∼ exp(0.25) and

Zi ∼ t5/
√

5/3.
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ω0 ω̌0 ω̌∗0 ωlap ωcauchy

0.9

l1-loss(sd) 0.015(0.001) 0.018(0.001) 0.008(0.001) 0.008(0.001)

Error1(sd) 19.6(1.2) 17.8(1.2) 26.2(0.7) 21.4(0.5)

Error2(sd) 26.5(0.7) 28.4(0.8) 22.8(0.6) 24.7(0.6)

Signal-l1-loss(sd) 0.164(0.002) 0.165(0.002) 0.166(0.002) 0.162(0.002)

0.75

l1-loss(sd) 0.023(0.002) 0.027(0.002) 0.035(0.002) 0.034(0.002)

Error1(sd) 36.0(1.8) 34.3(1.9) 64.5(1.5) 63.7(1.6)

Error2(sd) 44.9(1.0) 47.3(1.2) 32.5(0.8) 32.7(0.9)

Signal-l1-loss(sd) 0.322(0.002) 0.323(0.002) 0.327(0.002) 0.325(0.002)

0.5

l1-loss(sd) 0.027(0.002) 0.024(0.002) 0.413(0.005) 5.0(0)

Error1(sd) 47.5(1.8) 44.9(1.8) 417.2(4.6) 500(0)

Error2(sd) 60.6(0.9) 62.5(1.0) 3.9(0.3) 0(0)

Signal-l1-loss(sd) 0.529(0.002) 0.529(0.002) 0.629(0.003) 0.622(0.002)

Table 2.14 Simulation results under the model P7 + N2:Nonzero Θi ∼ U(1, 1 + 2π)

and Zi ∼ t5/
√

5/3.
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ω0 ω̌0 ω̌∗0 ωlap ωcauchy

0.9

l1-loss(sd) 0.015(0.001) 0.014(0.001) 0.095(0.002) 0.077(0.002)

Error1(sd) 21.5(0.9) 20.0(0.9) 97.7(2.5) 80.8(2.2)

Error2(sd) 21.3(0.6) 21.5(0.6) 8.0(0.3) 7.3(0.4)

Signal-l1-loss(sd) 0.170(0.002) 0.170(0.002) 0.227(0.002) 0.210(0.002)

0.75

l1-loss(sd) 0.017(0.001) 0.015(0.001) 0.285(0.004) 0.322(0.005)

Error1(sd) 26.0(0.8) 25.3(0.9) 288.5(3.8) 324.3(5.5)

Error2(sd) 34.5(0.8) 33.6(0.8) 1.3(0.1) 1.2(0.2)

Signal-l1-loss(sd) 0.321(0.002) 0.320(0.002) 0.459(0.003) 0.445(0.003)

0.5

l1-loss(sd) 0.023(0.001) 0.024(0.001) 0.5(0) 0.5(0)

Error1(sd) 23.9(0.6) 22.4(0.6) 500(0) 500(0)

Error2(sd) 47.4(0.7) 48.5(0.7) 0(0) 0(0)

Signal-l1-loss(sd) 0.531(0.002) 0.530(0.002) 0.743(0.002) 0.705(0.002)

Table 2.15 Simulation results under the model P1 + N3:Nonzero Θi = 3 and Zi ∼

SN(0, 1, 1)/
√

1− 1/π.
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ω0 ω̌0 ω̌∗0 ωlap ωcauchy

0.9

l1-loss(sd) 0.012(0.001) 0.012(0.001) 0.107(0.002) 0.093(0.002)

Error1(sd) 7.5(0.8) 6.9(0.8) 107.5(2.1) 93.0(1.9)

Error2(sd) 7.4(0.8) 7.7(0.8) 0.01(0.01) 0.01(0.01)

Signal-l1-loss(sd) 0.123(0.003) 0.123(0.003) 0.219(0.002) 0.193(0.002)

0.75

l1-loss(sd) 0.012(0.001) 0.013(0.001) 0.326(0.004) 0.403(0.005)

Error1(sd) 8.7(0.8) 7.9(0.8) 326.3(3.5) 402.5(5.0)

Error2(sd) 8.9(0.9) 9.3(0.8) 0(0) 0(0)

Signal-l1-loss(sd) 0.244(0.003) 0.246(0.003) 0.475(0.003) 0.461(0.003)

0.5

l1-loss(sd) 0.011(0.001) 0.013(0.001) 0.5(0) 0.5(0)

Error1(sd) 4.6(0.6) 3.3(0.6) 500(0) 500(0)

Error2(sd) 10.1(1.1) 11.2(1.0) 0(0) 0(0)

Signal-l1-loss(sd) 0.445(0.003) 0.447(0.003) 0.748(0.002) 0.703(0.002)

Table 2.16 Simulation results under the model P2 + N3:Nonzero Θi = 5 and Zi ∼

SN(0, 1, 1)/
√

1− 1/π.
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ω0 ω̌0 ω̌∗0 ωlap ωcauchy

0.9

l1-loss(sd) 0.021(0.02) 0.023(0.002) 0.065(0.002) 0.055(0.002)

Error1(sd) 11.1(1.1) 8.8(1.0) 87.5(1.7) 71.2(1.6)

Error2(sd) 31.9(1.5) 33.1(1.6) 16.8(0.6) 17.9(0.7)

Signal-l1-loss(sd) 0.183(0.001) 0.181(0.001) 0.219(0.003) 0.201(0.002)

0.75

l1-loss(sd) 0.032(0.02) 0.035(0.002) 0.213(0.004) 0.227(0.004)

Error1(sd) 24.1(1.5) 20.3(1.4) 242.8(3.3) 275.6(3.9)

Error2(sd) 60.5(1.2) 66.3(1.1) 28.6(0.7) 28.5(0.6)

Signal-l1-loss(sd) 0.343(0.003) 0.344(0.003) 0.487(0.003) 0.465(0.003)

0.5

l1-loss(sd) 0.059(0.003) 0.063(0.003) 0.5(0) 0.5(0)

Error1(sd) 34.5(1.5) 29.6(1.4) 500(0) 500(0)

Error2(sd) 98.3(1.4) 100.2(1.4) 0(0) 0(0)

Signal-l1-loss(sd) 0.621(0.002) 0.626(0.002) 0.839(0.002) 0.771(0.002)

Table 2.17 Simulation results under the model P3 + N3:Nonzero Θi ∼ N(0, 10) and

Zi ∼ SN(0, 1, 1)/
√

1− 1/π.
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ω0 ω̌0 ω̌∗0 ωlap ωcauchy

0.9

l1-loss(sd) 0.016(0.001) 0.017(0.001) 0.080(0.002) 0.063(0.002)

Error1(sd) 12.1(1.1) 11.8(1.1) 93.5(1.7) 77.4(1.7)

Error2(sd) 22.9(0.8) 24.7(0.9) 17.4(0.6) 15.6(0.5)

Signal-l1-loss(sd) 0.131(0.002) 0.133(0.002) 0.212(0.002) 0.183(0.002)

0.75

l1-loss(sd) 0.026(0.001) 0.027(0.001) 0.227(0.004) 0.253(0.005)

Error1(sd) 21.5(1.1) 17.9(1.0) 247.9(3.7) 273.3(5.3)

Error2(sd) 50.2(0.9) 54.3(0.9) 23.4(0.5) 16.6(0.6)

Signal-l1-loss(sd) 0.267(0.002) 0.267(0.002) 0.422(0.004) 0.409(0.003)

0.5

l1-loss(sd) 0.054(0.001) 0.055(0.001) 0.5(0) 0.5(0)

Error1(sd) 24.4(0.7) 23.5(0.7) 500(0) 500(0)

Error2(sd) 79.4(1.1) 77.8(1.0) 0(0) 0(0)

Signal-l1-loss(sd) 0.479(0.002) 0.483(0.002) 0.732(0.002) 0.693(0.002)

Table 2.18 Simulation results under the model P4+N3:Nonzero Θi ∼ 10 exp(1) and

Zi ∼ SN(0, 1, 1)/
√

1− 1/π.
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ω0 ω̌0 ω̌∗0 ωlap ωcauchy

0.9

l1-loss(sd) 0.036(0.002) 0.034(0.002) 0.029(0.002) 0.018(0.001)

Error1(sd) 23.4(1.1) 22.1(1.2) 61.2(1.6) 45.3(1.3)

Error2(sd) 56.3(0.8) 59.6(0.8) 40.3(0.7) 42.9(0.6)

Signal-l1-loss(sd) 0.175(0.002) 0.175(0.002) 0.199(0.002) 0.183(0.002)

0.75

l1-loss(sd) 0.069(0.002) 0.070(0.002) 0.101(0.003) 0.083(0.004)

Error1(sd) 35.6(1.1) 33.8(1.0) 157.5(2.6) 146.5(2.8)

Error2(sd) 106.3(1.1) 110.6(1.1) 55.3(1.0) 54.2(1.1)

Signal-l1-loss(sd) 0.349(0.002) 0.348(0.002) 0.390(0.003) 0.375(0.002)

0.5

l1-loss(sd) 0.143(0.002) 0.144(0.002) 0.425(0.006) 0.484(0.004)

Error1(sd) 41.3(0.9) 37.7(0.8) 425.4(4.5) 484.2(3.7)

Error2(sd) 183.2(1.3) 188.8(1.3) 12.5(0.8) 1.1(0.7)

Signal-l1-loss(sd) 0.581(0.002) 0.580(0.002) 0.681(0.004) 0.657(0.003)

Table 2.19 Simulation results under the model P5 + N3:Nonzero Θi ∼ N(2, 1) and

Zi ∼ SN(0, 1, 1)/
√

1− 1/π.
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ω0 ω̌0 ω̌∗0 ωlap ωcauchy

0.9

l1-loss(sd) 0.027(0.002) 0.030(0.002) 0.038(0.002) 0.020(0.001)

Error1(sd) 15.7(1.0) 14.5(1.0) 67.9(1.5) 51.1(1.1)

Error2(sd) 42.4(1.0) 43.8(1.0) 29.9(0.5) 31.9(0.6)

Signal-l1-loss(sd) 0.139(0.001) 0.138(0.001) 0.185(0.002) 0.163(0.001)

0.75

l1-loss(sd) 0.061(0.002) 0.066(0.002) 0.151(0.003) 0.152(0.004)

Error1(sd) 27.6(0.9) 24.9(0.9) 194.1(2.8) 195.8(3.2)

Error2(sd) 88.4(0.9) 90.7(0.9) 43.1(0.7) 43.1(0.8)

Signal-l1-loss(sd) 0.291(0.002) 0.289(0.002) 0.396(0.003) 0.369(0.002)

0.5

l1-loss(sd) 0.134(0.002) 0.138(0.002) 0.459(0.004) 0.498(0.001)

Error1(sd) 27.2(0.8) 28.6(0.8) 446.7(3.6) 498.3(1.1)

Error2(sd) 160.6(1.4) 163.4(1.3) 8.7(1.0) 0(0)

Signal-l1-loss(sd) 0.518(0.002) 0.517(0.002) 0.711(0.004) 0.655(0.002)

Table 2.20 Simulation results under the model P6+N3:Nonzero Θi ∼ exp(0.25) and

Zi ∼ SN(0, 1, 1)/
√

1− 1/π.
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ω0 ω̌0 ω̌∗0 ωlap ωcauchy

0.9

l1-loss(sd) 0.013(0.001) 0.013(0.001) 0.089(0.002) 0.070(0.002)

Error1(sd) 14.3(0.9) 13.2(0.8) 97.5(1.8) 78.9(1.5)

Error2(sd) 21.5(0.7) 22.5(0.8) 8.1(0.3) 9.0(0.3)

Signal-l1-loss(sd) 0.147(0.001) 0.147(0.001) 0.220(0.002) 0.193(0.002)

0.75

l1-loss(sd) 0.019(0.001) 0.023(0.001) 0.260(0.004) 0.296(0.005)

Error1(sd) 23.9(0.7) 20.5(0.5) 266.9(3.2) 302.3(4.3)

Error2(sd) 41.5(0.9) 43.9(0.9) 7.4(0.4) 6.1(0.4)

Signal-l1-loss(sd) 0.309(0.001) 0.306(0.001) 0.454(0.002) 0.434(0.002)

0.5

l1-loss(sd) 0.040(0.001) 0.041(0.001) 0.5(0) 0.5(0)

Error1(sd) 26.8(0.7) 25.9(0.6) 500(0) 500(0)

Error2(sd) 64.8(0.9) 65.9(0.9) 0(0) 0(0)

Signal-l1-loss(sd) 0.527(0.002) 0.528(0.002) 0.739(0.002) 0.698(0.002)

Table 2.21 Simulation results under the model P7 + N3:Nonzero Θi ∼ U(1, 1 + 2π)

and Zi ∼ SN(0, 1, 1)/
√

1− 1/π.
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CHAPTER 3

Covariance Selection

3.1 Introduction

Recently, there is a surge of interest on the estimation of large dimensional

sparse covariance matrices and concentration matrices. Bickel and Levina (2008a,

b) proposed estimators by tapering or thresholding sample covariance matrices

and showed that they are consistent over a class of sparse matrices. Rothman,

Levina and Zhu (2009) considered thresholding sample covariance matrices with

more general thresholding functions possessing a shrinkage property. El Karoui

(2008) studied the thresholding estimators under a special notion of sparsity called
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β − sparsity and showed that β − sparse matrices, with β < 1/2 are consistently

estimable in spectral norm.

Our objective in this chapter is to estimate the sparsity of the population

covariance matrix from a sample correlation matrix. Different from the usual

assumption in the literature, we do not assume the population covariance matrix

to be very sparse. Our assumption on the population covariance or correlation

matrix is that it is believed to have a number of zeros.

One possible application of a good sparsity estimator is in finding a data-

dependent threshold for the sample correlation matrix. Bickel and Levina (2008a,b)

used cross validation to choose a data-dependent threshold for the sample covari-

ance matrix. However, it is computationally very intensive and tends to over-

threshold according to our simulation. Furthermore, when the noise is not ho-

moscedastic, it is more reasonable to find a universal threshold to the sample

correlation matrix other than to find a universal threshold to the sample covari-

ance matrix. El Karoui (2008) has established theoretical results for thresholded

sample correlation matrices under β − sparsity , but the methods used for choos-

ing a data-driven threshold is still by resampling. Cai and Liu (2011) proposed an

adaptive thresholding method in thresholding sample covariance matrices but they

did not deal with sample correlation matrices. However, if the proportion of zeros,

say ω, in the population correlation matrix can be well estimated, we can estimate
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the covariance structure by thresholding the corresponding proportion of smallest

(in absolute value) sample correlation coefficients to be zero. This to some degree

provides an efficient way of choosing the data-dependent thresholding parameter.

In Section 3.2, we introduce a series of Bernstein-type inequalities and estab-

lish a theoretical verification (Theorem 3.1) of our idea of deriving estimators to

the covariance structure based on thresholding the sample correlation matrix. In

Section 3.3, we propose an empirical Bayes estimator for ω under Gaussian noise.

In Section 3.4, we construct a method-of-moments estimator based on trigonomet-

ric moment matrices, and derive an upper bound for the expected L1 loss of the

estimator. Simulation studies are carried out in Section 3.5 with comparison to

estimators derived base on cross-validation methods.

3.2 Sample correlation matrix

In this section, we prove a series of Bernstein-type inequalities. Lemma 1 is

an immediate application of the original Bernstein inequality [Bennett (1962)].

Lemma 1 and Lemma 2 are used to show Lemma 3, which establishes an exponen-

tial bound for the tail probability of the sample correlation coefficients.

Suppose that X1, ..., Xn are n i.i.d random observations of Y, which is a p
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dimensional random vector with mean 0 and covariance matrix Σp×p = (σij)p×p.

We first of all introduce some notations:

Y = (Y1, Y2, ..., Yp)
′;

Xi = (X1i, X2i, ..., Xpi)
′, i = 1, ...n;

S2
j =

n∑
i=1

X2
ji, j = 1, ...p;

tjk = nσ
1/2
jj σ

1/2
kk /SjSk, 1 ≤ j, k ≤ p;

ρjk = σjk(σjjσkk)
−1/2, 1 ≤ j, k ≤ p;

Zji = Xji/σ
1/2
jj , 1 ≤ j ≤ p, 1 ≤ i ≤ n;

The sample covariance matrix is given by

S = (sij)p×p, where sij =
1

n

n∑
k=1

XikXjk, 1 ≤ i, j ≤ p;

The sample correlation coefficients between Yi and Yj, 1 ≤ i, j ≤ p are given by

rij =

∑n
k=1XikXjk

SiSj

=
sij√
siisjj

, 1 ≤ i, j ≤ p,

and the sample correlation matrix is denoted as R = (rij)p×p. Write the population

correlation matrix as Γ = (ρij)p×p. We point out that these notations will be used

frequently throughout this chapter.

Assume that, for any 1 ≤ i ≤ p, exists a constant C0 such that:

0 < E|Y
2
i

σii

− 1|2 ≤ σ2 <∞, i = 1, ..., p; (3.1)
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E|Y
2
i

σii

− 1|r ≤ 1

2
σ2Cr−2

0 r!, r ≥ 3. (3.2)

It can be easily seen that all results in this section are also true when Yi, i = 1, ..., p

are constants with probability one.

By Bernstein’s inequality [Bennett (1962) inequality (7)] we immediately have,

for any x > 0:

P (|
n∑

j=1

X2
ij/σii − n| ≥ nx) ≤ 2 exp{−

x2n

E|
Y 2

i
σii

−1|2

2 + 2C0x

E|
Y 2

i
σii

−1|2

}.

Notice that the right hand side of the above inequality is an increasing function of

E|Y
2
i

σii
− 1|2, we conclude that:

Lemma 3.1. For any 1 ≤ i ≤ p and 0 < x ≤ K , there exists a constant d > 0,

depending on K, C0 and σ2 only, such that

P (|
n∑

j=1

X2
ij/σii − n| ≥ nx) ≤ 2 exp{−dnx2}. (3.3)

Particularly, when Y ∼ N (0,Σp×p), we have, for r ≥ 2:

E|Y
2
i

σii

− 1|r ≤ Emax(
Y 2

i

σii

, 1)r

≤ E
Y 2r

i

σr
ii

+ 1

= (2r − 1)!! + 1

≤ 2rr!.

Therefore, Lemma 1 applies when X1, ..., Xn i.i.d ∼ N (0,Σp×p).
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Lemma 3.2. For any 1 ≤ j, k ≤ p and 0 < x ≤ K , there exists a constant f > 0,

depending on K, C0 and σ2 only, such that

P (|
n∑

i=1

[(Zji + Zki)
2 − 2(1 + ρjk)]| ≥ nx) ≤ 2 exp{−fnx2}; (3.4)

P (|
n∑

i=1

[(Zji − Zki)
2 − 2(1− ρjk)]| ≥ nx) ≤ 2 exp{−fnx2}. (3.5)

Proof. To prove (3.4), by Bernstein’s inequality, we only need to show that there

exist constants c > 0, w > 0 depending on K, C0 and σ2 only, such that

E|(Zji + Zki)
2 − 2(1 + ρjk)|r ≤ cwr−2r!, r ≥ 2.

Notice that:

E|(Zji + Zki)
2 − 2(1 + ρjk)|r

≤ E[|Zji + Zki|2 + 2(1 + ρjk)]
r

≤ E[2|Z2
ji − 1|+ 2|Z2

ki − 1|+ 2(3 + ρjk)]
r

≤ 3r−1E[2r|Z2
ji − 1|r + 2r|Z2

ki − 1|r + 2r|3 + ρjk|r],

where in the last step we use the following inequality:

(
a+ b+ c

3
)r ≤ ar + br + cr

3
, for any a, b, c > 0, r ≥ 2.

By the the definition of Zji, 1 ≤ i, j ≤ p and assumption (3.2) , we have:

E|(Zji + Zki)
2 − 2(1 + ρjk)|r
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≤ 3r−1E[2r|Z2
ji − 1|r + 2r|Z2

ki − 1|r + 2r|3 + ρjk|r]

≤ 6r[σ2Cr−2
0 r! + 4r]

≤ 36σ2(6C0 +
4

1 ∧ σ
)r−2r!

= cwr−2r!,

where c = 36σ2 and w = 6C0 + 4
1∧σ

. (3.5) can be proved similarly.

Next we prove a Bernstein-type inequality for elements of the sample correlation

matrix.

Lemma 3.3. For any 0 < v ≤ 2 and 1 ≤ j, k ≤ p, there exist constants d1 > 0

and d2 > 0, depending on C0 and σ2 only, such that

P (|
∑n

i=1XjiXki

SjSk

− ρjk| ≥ v) ≤ d1e
−d2nv2

.

Proof. When ρjk = ±1, LHS of the inequality equals to zero, and so the inequality

holds. Now we consider the case: −1 < ρjk < 1.

P (|
∑n

i=1XjiXki

SjSk

− ρjk| ≥ v) = P (|
∑n

i=1XjiXki

nσ
1/2
jj σ

1/2
kk

·
nσ

1/2
jj σ

1/2
kk

SjSk

− ρjk| ≥ v)

= P (| 1
n

n∑
i=1

ZjiZki · tjk − ρjk| ≥ v)

≤ P (| 1
n

n∑
i=1

ZjiZki · (tjk − 1)| ≥ v

2
)

+P (| 1
n

n∑
i=1

(ZjiZki − ρjk)| ≥
v

2
).
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Now,

n∑
i=1

(ZjiZki − ρjk) =
1

4

{ n∑
i=1

[(Zji + Zki)
2 − 2(1 + ρjk)]

−
n∑

i=1

[(Zji − Zki)
2 − 2(1− ρjk)]

}
.

By Lemma 3.2, there exists a constant f1 > 0, depending on C0 and σ2 only, such

that,

P (| 1
n

n∑
i=1

(ZjiZki − ρjk)| ≥
v

2
)

= P (|
n∑

i=1

[(Zji + Zki)
2 − 2(1 + ρjk)]−

n∑
i=1

[(Zji − Zki)
2 − 2(1− ρjk)]| ≥ 2nv)

≤ P (|
n∑

i=1

[(Zji + Zki)
2 − 2(1 + ρjk)]| ≥ nv)

+P (|
n∑

i=1

[(Zji − Zki)
2 − 2(1− ρjk)]| ≥ nv)

≤ 4e−f1nv2

.

Let a = v
2(|ρjk|+v)

, we have:

P (| 1
n

n∑
i=1

ZjiZki · (tjk − 1)| ≥ v

2
) ≤ P (|

n∑
i=1

ZjiZki| ≥
nv

2a
) + P (|tjk − 1| > a).

Now,

P (|
n∑

i=1

ZjiZki| ≥
nv

2a
) ≤ P (|

n∑
i=1

ZjiZki − nρjk| ≥ n(
v

2a
− |ρjk|))

= P (|
n∑

i=1

ZjiZki − nρjk| ≥ nv).
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As we have shown just now, by replacing v/2 to be v, the above inequality can be

bounded by 4e−f2nv2
, for some constant f2 > 0, depending on C0 and σ2 only.

P (|tjk − 1| > a) = P (nσ
1/2
jj σ

1/2
kk /SjSk > a+ 1) + P (nσ

1/2
jj σ

1/2
kk /SjSk < 1− a)

= P (
n∑

i=1

Z2
ji

n∑
i=1

Z2
ki <

n2

(1 + a)2
) + P (

n∑
i=1

Z2
ji

n∑
i=1

Z2
ki >

n2

(1− a)2
)

≤ P (
n∑

i=1

Z2
ji <

n

1 + a
) + P (

n∑
i=1

Z2
ki <

n

1 + a
)

+P (
n∑

i=1

Z2
ji >

n

1− a
) + P (

n∑
i=1

Z2
ki >

n

1− a
)

= P (
n∑

i=1

(Z2
ji − 1) < − an

1 + a
) + P (

n∑
i=1

(Z2
ki − 1) < − an

1 + a
)

+P (
n∑

i=1

(Z2
ji − 1) >

an

1− a
) + P (

n∑
i=1

(Z2
ki − 1) >

an

1− a
)

≤ P (|
n∑

i=1

(Z2
ji − 1)| > an

1 + a
) + P (|

n∑
i=1

(Z2
ki − 1)| > an

1 + a
).

By Lemma 3.1, there exists a constant d > 0 independent of n and v, such that,

P (|tjk − 1| > a) ≤ 4e−dn( a
1+a

)2

= 4e
−dn( v

3v+2|ρjk|
)2

≤ 4e−f3nv2

,

where f3 = d/(3v + 2|ρik|)2 ≥ d/64.

Above all, we have shown that:

P (|
∑n

i=1XjiXki

SjSk

− ρjk| ≥ v)

≤ P (| 1
n

n∑
i=1

ZjiZki · (tjk − 1)| ≥ v

2
) + P (|

n∑
i=1

ZjiZki| ≥
nv

2a
) + P (|tjk − 1| > a)
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≤ 4e−f1nv2

+ 4e−f2nv2

+ 4e−f3nv2

.

The theorem is proved by letting d1 = 12 and d2 = min(f1, f2, f3).

The next theorem establishes an upper bound for the probability of covariance

selection consistency. First of all, we introduce some notations and assumptions:

1)As defined at the beginning of this section, we write the population correlation

matrix as Γ = (ρij)p×p. Now let the set G = {(i, j) : ρij 6= 0, i < j}, with

card(G) = g, which is the cardinality of G. Assume that:

|ρij| ≥ k(n, p), if ρij 6= 0.

2)Defined for the sample correlation matrix R = (rij)p×p, a thresholding oper-

ator:

Tt(R) = [rijI{|rij |≥t}]1≤i,j≤p,

where t(n, p) < k(n, p) is a thresholding parameter.

3)Define Ĝ = {(i, j) : |rij| > t, i < j}.

Under Assumptions 1) and 2), we have:

Theorem 3.1. There exists c > 0, such that,

P (Ĝ = G) = 1−O(p2exp(−c(t2 ∨ (k − t)2)n)).
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Proof.

P (Ĝ 6= G) ≤ gP (|rij| ≤ t, (i, j) ∈ G) + (
p(p− 1)

2
− g)P (|rij| ≥ t, (i, j) ∈ Gc).

Now, by Lemma 3, there exist d1 > 0, d2 > 0, such that,

P (|rij| ≤ t, (i, j) ∈ G) = P (|
∑n

k=1XikXjk

SiSj

| < t, ρij ≥ k)

≤ P (|
∑n

k=1XikXjk

SiSj

− ρij| ≥ k − t)

≤ d1 exp{−d2(k − t)2n}.

Similarly,

P (|rij| ≥ t, (i, j) ∈ Gc) ≤ d1 exp{−d2t
2n}.

Hence:

P (Ĝ 6= G) ≤ gd1 exp{−d2(k − t)2n}+ (
p(p− 1)

2
− g)d1 exp{−d2t

2n}.

Therefore

P (Ĝ 6= G) ≤ d1
p(p− 1)

2
exp{−d2(t

2 ∨ (k − t)2)n}.

By setting k(n, p) and t(n, p) properly we have the following corollary:

Corollary 3.1. Assume that k ≥
√

2 log p
n

+ n−α, for some 0 < α < 1. With

t = k/2, we have:

P (Ĝ = G) = 1−O(exp{−n1−α}).
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3.3 Empirical Bayes estimator under multivari-

ate normal assumption

In this section, we model the prior on ρij as a mixture distribution which has

a point mass ω at zero. We propose an empirical Bayes estimator ω̂1 for ω and

show that it is consistent. Let the sample correlation coefficients be defined as in

Section 3.2.

3.3.1 Assumptions on the prior

Assuming the prior distribution on the correlation coefficients ρij, 1 ≤ j < i ≤ p

satisfies:

A1 The marginal distribution of ρij is a mixture of a point mass at zero and a

distribution function G in [-1,1]:

(1− ω)dG(ρ) + ωδ0(ρ),

where δ0(ρ) denotes point mass at ρ = 0.

A2 Let Fij = σ(ρij) denote the σ-field generated by ρij. Define for all 1 ≤
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i, j, s, t ≤ p,

α(ρij, ρst) = sup
A∈Fij ,B∈Fst

|P (A ∩B)− P (A)P (B)|.

Assuming that, there exists a constant 0 ≤ ν < 4, such that

∑
i,j,s,t:all distinct

α(ρij, ρst) = O(pν).

This condition implies that

∑
i,j,s,t:all distinct

ReE[(e−ikρij − Ee−ikρij)(eikρst − Eeikρst)] = O(pν),

which is what we really need in Section 3.4.

A3 Let g be the corresponding density function of G. Define

g1(ρ) =


g(ρ), if − 1 < ρ < 0,

0, otherwise,

and

g2(ρ) =


g(ρ), if 0 < ρ < 1,

0, otherwise,

There exist constants a ≥ 0 and 0 ≤ b < 1
2
, such that,

If

∫ 1

0

g1(−ρ)dρ > 0, for all i, n ∈ N, when n large enough,∫ 1

0

(1− ρ2)
n
2 ρig1(−ρ)dρ ≤ nbB(

n

2
+ 1,

i

2
+

1

2
);

for all i, n ∈ N, i ≤ n, when n large enough,
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∫ 1

0

(1− ρ2)
n
2 ρ2ig1(−ρ)dρ ≥ n−aB(

n

2
+ 1, i+

1

2
);

If

∫ 1

0

g2(ρ)dρ > 0, for all i, n ∈ N, when n large enough,∫ 1

0

(1− ρ2)
n
2 ρig2(ρ)dρ ≤ nbB(

n

2
+ 1,

i

2
+

1

2
);

for all i, n ∈ N, i ≤ n, when n large enough,∫ 1

0

(1− ρ2)
n
2 ρ2ig2(ρ)dρ ≥ n−aB(

n

2
+ 1, i+

1

2
);

where B(·, ·) is the beta function.

This assumption prevents g in degenerating to point mass distributions at 0,-1

and 1. Also, it ensures all the interchange of summation and integration operations

throughout this section.

A4 There exists a constant v ∈ (0, 1
2
), such that ,∫ 1

n
1
2−v

− 1

n
1
2−v

dG(ρ) −→ 0, as n increases.

Remark 3.1. Any continuous density function g with support [-1,1] satisfies

Assumptions A3 and A4. Also, it is easy to see that for any a1, a2 < ∞, if

ρ2 ∼ Beta(a1, a2), A3 and A4 are satisfied. When 0 < ω < 1, for any g, such

that supρ∈(−1,1) g(ρ) < ∞, we can perturb ω a little bit to be ω′ = ω − n−a for

some constant a > 0, and replacing g by g′(ρ) = 1−ω
1−ω′

g(ρ) + 1
2(1−ω′)

n−a, then g′ will

satisfy Assumption A3. This perturbation will only introduce an error which is

negligible and we will discuss this in Section 3.5.
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3.3.2 Motivation for ω̂1

The following equation will be used for a few times in this section:

Γ(z)Γ(z +
1

2
) = 21−2z

√
πΓ(2z).

Under normal noise, the density of rij given ρij is [see Anderson (2003), Theo-

rem 4.2.2]:

frij |ρij
(r|ρ) =

2n−2(1− ρ2)
n
2 (1− r2)

n−3
2

(n− 2)!π

∞∑
i=0

(2ρr)i

i!
Γ2(

n+ i

2
) ∀r ∈ (−1, 1).

Denote ω′ = 1− ω. The marginal density of rij can be simplified:

frij
(r;ω) = (1− ω′)frij |ρij

(r|ρ = 0) + ω′
∫ 1

−1

frij |ρij
(r|ρ)dG(ρ)

= (1− ω′)
Γ(n

2
)

Γ(n−1
2

)
√
π

(1− r2)
n−3

2

+ω′
∫ 1

−1

2n−2(1− ρ2)
n
2 (1− r2)

n−3
2

(n− 2)!π

∞∑
i=0

(2ρr)2i

(2i)!
Γ2(

n+ 2i

2
)dG(ρ)

+ω′
∫ 1

−1

2n−2(1− ρ2)
n
2 (1− r2)

n−3
2

(n− 2)!π

∞∑
i=0

(2ρr)2i+1

(2i+ 1)!
Γ2(

n+ 2i+ 1

2
)dG(ρ)

=
Γ(n

2
)

Γ(n−1
2

)
√
π

(1− r2)
n−3

2 (1 + ω′aij),

where

aij = −1 +

∫ 1

−1

2n−2Γ(n−1
2

)
√
π(1− ρ2)

n
2

Γ(n
2
)(n− 2)!π

∞∑
i=0

(2ρr)i

(i)!
Γ2(

n+ i

2
)dG(ρ)

= −1 +

∫ 1

−1

2n−2Γ(n−1
2

)
√
π(1− ρ2)

n
2

Γ(n
2
)(n− 2)!π

∞∑
i=0

(2ρr)2i

(2i)!
Γ2(

n+ 2i

2
)dG(ρ)
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+

∫ 1

−1

2n−2Γ(n−1
2

)
√
π(1− ρ2)

n
2

Γ(n
2
)(n− 2)!π

∞∑
i=0

(2ρr)2i+1

(2i+ 1)!
Γ2(

n+ 2i+ 1

2
)dG(ρ)

= −1 +

∫ 1

−1

2n−2Γ(n−1
2

)Γ(n
2
)
√
π(1− ρ2)

n
2

Γ2(n
2
)(n− 2)!π

∞∑
i=0

(2ρr)2i

(2i)!
Γ2(

n+ 2i

2
)dG(ρ)

+

∫ 1

−1

2n−2Γ(n−1
2

)Γ(n
2
)
√
π(1− ρ2)

n
2

Γ2(n
2
)(n− 2)!π

∞∑
i=0

(2ρr)2i+1

(2i+ 1)!
Γ2(

n+ 2i+ 1

2
)dG(ρ)

= −1 +

∫ 1

−1

Γ(n− 1)(1− ρ2)
n
2

Γ2(n
2
)(n− 2)!

∞∑
i=0

(2ρr)2i

(2i)!
Γ2(

n+ 2i

2
)dG(ρ)

+

∫ 1

−1

Γ(n− 1)(1− ρ2)
n
2

Γ2(n
2
)(n− 2)!

∞∑
i=0

(2ρr)2i+1

(2i+ 1)!
Γ2(

n+ 2i+ 1

2
)dG(ρ)

= −1 +
∞∑
i=0

Γ2(n+2i
2

)22ir2i

Γ2(n
2
)(2i)!

∫ 1

−1

(1− ρ2)
n
2 ρ2idG(ρ)

+
∞∑
i=0

Γ2(n+2i+1
2

)22i+1r2i+1

Γ2(n
2
)(2i+ 1)!

∫ 1

−1

(1− ρ2)
n
2 ρ2i+1dG(ρ).

Notice that when aij > (<)0, frij
(r;ω) is maximized when ω = 0(1). In other

words, when aij > (<)0, it tends to estimate ρij as nonzero(zero). Therefore we

propose the following estimator for ω:

ω̂1 = 1−
∑

1≤i<j≤p I{aij>0}

p(p− 1)/2
. (3.6)

Particularly, when g is an even function in (-1,1), we have:

aij = −1 + 2
∞∑
i=0

Γ2(n+2i
2

)22ir2i

Γ2(n
2
)(2i)!

∫ 1

0

(1− ρ2)
n
2 ρ2ig(ρ)dρ,

which is an increasing function of r2, therefore the corresponding threshold is the

root of the following equation:

aij(r) = 0.
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3.3.3 Properties of ω̂1

Lemma 3.4 and Lemma 3.5 to some degree provide a lower bound and an upper

bound for the thresholding parameter corresponding to our estimator ω̂1. Theorem

3.2 shows that ω̂1 is consistent in estimating ω.

We first of all introduce an inequality that will be used quite often in this

subsection:

Lemma 3.4. for any n, k ∈ Z+, we have:

1√
n
2

+ k
<

Γ(n
2

+ k)

Γ(n
2

+ k + 1
2
)
<

1√
n
2

+ k − 1
4

. (3.7)

Proof. This is a direct result of (4.2) of Bustoz and Ismail (1986).

The following lemma provides an asymptotic lower bound for the thresholding

parameter.

Lemma 3.5. Under Assumption A3, for ∀n large enough, and 0 < c < 1
2
− b,

aij > 0 ⇒ r2
ij >

(1
2
− b− c) log n

n
.

Proof. It is enough to show that for ∀n large enough and 0 < c < 1
2
− b, r2 ≤

( 1
2
−b−c) log n

n
implies aij(r) < 0.
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Write:

∞∑
i=0

Γ2(n+2i
2

)22ir2i

Γ2(n
2
)(2i)!

∫ 1

0

(1− ρ2)
n
2 ρ2i(g1(−ρ) + g2(ρ))dρ

=

∫ 1

0

(1− ρ2)
n
2 (g1(−ρ) + g2(ρ))dρ

+

[n
2
]∑

i=1

Γ2(n+2i
2

)22ir2i

Γ2(n
2
)(2i)!

∫ 1

0

(1− ρ2)
n
2 ρ2i(g1(−ρ) + g2(ρ))dρ

+
∞∑

i=[n
2
]+1

Γ2(n+2i
2

)22ir2i

Γ2(n
2
)(2i)!

∫ 1

0

(1− ρ2)
n
2 ρ2i(g1(−ρ) + g2(ρ))dρ

=: I + II + III;

∞∑
i=0

Γ2(n+2i+1
2

)22i+1r2i+1

Γ2(n
2
)(2i+ 1)!

∫ 1

−1

(1− ρ2)
n
2 ρ2i+1(g1(−ρ) + g2(ρ))dρ

=

[n
2
]∑

i=0

Γ2(n+2i+1
2

)22i+1r2i+1

Γ2(n
2
)(2i+ 1)!

∫ 1

0

(1− ρ2)
n
2 ρ2i+1(g1(−ρ) + g2(ρ))dρ

+
∞∑

i=[n
2
]+1

Γ2(n+2i+1
2

)22i+1r2i+1

Γ2(n
2
)(2i+ 1)!

∫ 1

0

(1− ρ2)
n
2 ρ2i+1(g1(−ρ) + g2(ρ))dρ

=: II ′ + III ′.

From Assumption A3 and Lemma 3.4, we have:

I ≤ 2nb Γ(n
2

+ 1)Γ(1
2
)

Γ(n
2

+ 3
2
)

≤ 2nb
√
π√

n
2

+ 3
4

.

For III, we have:

III
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≤ 2nb
∑
i>[n

2
]

Γ2(n+2i
2

)22ir2i

Γ2(n
2
)(2i)!

·
Γ(n

2
+ 1)Γ(i+ 1

2
)

Γ(n
2

+ i+ 3
2
)

= 2nb
∑
i>[n

2
]

(2r)2i ·
Γ(n

2
+ 1)

Γ(n
2
)

·
Γ(n

2
+ i)

(n
2

+ i+ 1
2
)Γ(n

2
+ i+ 1

2
)
·
Γ(n

2
+ i)Γ(i+ 1

2
)

Γ(n
2
)(2i)!

= 2nb
∑
i>[n

2
]

(2r)2i ·
n
2

n
2

+ i+ 1
2

·
Γ(n

2
+ i)

Γ(n
2

+ i+ 1
2
)
·
Γ(i+ 1

2
)

Γ(i+ 1)
·
(n

2
+ i− 1) · · · n

2

2i · · · (i+ 1)

≤ 2nb
∑
i>[n

2
]

(2r)2i · 1

2
· 1√

n
2

+ i− 1
4

· 1√
i+ 1

4

≤ nb
∑
i>[n

2
]

√
2

n
(2r)2i .

Similarly, for III ′, we have:

|III ′|

≤ 2nb
∑
i>[n

2
]

Γ2(n+2i+1
2

)22i+1|r|2i+1

Γ2(n
2
)(2i+ 1)!

·
Γ(n

2
+ 1)Γ(i+ 1)

Γ(n
2

+ i+ 2)

= 2nb
∑
i>[n

2
]

|2r|2i+1 ·
Γ(n

2
+ 1)

Γ(n
2
)

·
Γ(n

2
+ i+ 1

2
)

(n
2

+ i+ 1)Γ(n
2

+ i+ 1)
·
Γ(n

2
+ i+ 1

2
)Γ(i+ 1)

Γ(n
2
)(2i+ 1)!

= 2nb
∑
i>[n

2
]

|2r|2i+1 n
2

n
2

+ i+ 1
·
Γ(n

2
+ i+ 1

2
)

Γ(n
2

+ i+ 1)
·
Γ(n

2
+ i+ 1

2
)

Γ(n
2

+ i+ 1)
·
Γ(n

2
+ i+ 1)

Γ(n
2
)

· Γ(i+ 1)

(2i+ 1)!

≤ 2nb
∑
i>[n

2
]

|2r|2i+1 · 1

2
· 1

n
2

+ i+ 1
4

·
(n

2
+ i)(n

2
+ i− 1) · · · n

2

(2i+ 1)2i · · · (i+ 1)

≤ nb
∑
i>[n

2
]

1

n
|2r|2i+1 .

For II and II ′, we have:

II ≤ 2nb

[n
2
]∑

i=1

Γ2(n+2i
2

)22ir2i

Γ2(n
2
)(2i)!

·
Γ(n

2
+ 1)Γ(i+ 1

2
)

Γ(n
2

+ i+ 3
2
)

= 2nb

[n
2
]∑

i=1

(2r)2i ·
Γ(i+ 1

2
)

Γ(2i+ 1)
·
Γ(n

2
+ i)

Γ(n
2
)

·
Γ(n

2
+ 1)

Γ(n
2
)

·
Γ(n

2
+ i)

(n
2

+ i+ 1
2
)Γ(n

2
+ i+ 1

2
)
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= 2nb

[n
2
]∑

i=1

(2r)2i ·
√
π2−2i

Γ(i+ 1)
· (n

2
+ i− 1) · · · n

2
·

Γ(n
2

+ i)

Γ(n
2

+ i+ 1
2
)
·

n
2

n
2

+ i+ 1
2

≤ 2nb
√
π

[n
2
]∑

i=1

(nr2)i

i!
· 1√

n
2

+ i− 1
4

≤ 2nb
√

2πenr2 1√
n

.

|II ′|

≤ 2nb

[n
2
]∑

i=1

Γ2(n+2i+1
2

)22i+1|r|2i+1

Γ2(n
2
)(2i+ 1)!

·
Γ(n

2
+ 1)Γ(i+ 1)

Γ(n
2

+ i+ 2)

= 4|r|nb

[n
2
]∑

i=1

(2r)2iΓ(i+ 1)

Γ(2i+ 2)
·
Γ(n

2
+ i+ 1

2
)

Γ(n
2
)

·
Γ(n

2
+ 1)

Γ(n
2
)

·
Γ(n

2
+ i+ 1

2
)

(n
2

+ i+ 1)Γ(n
2

+ i+ 1)

= 4nb|r|
[n
2
]∑

i=1

(2r)2i ·
√
π2−2i−1Γ(i+ 1)

Γ(i+ 3
2
)Γ(i+ 1)

·
Γ(n

2
+ i)

Γ(n
2
)

·
Γ(n

2
+ i+ 1

2
)

Γ(n
2

+ i)

· n

n+ 2i+ 2
·
Γ(n

2
+ i+ 1

2
)

Γ(n
2

+ i+ 1)

≤ 2nb
√
π|r|

[n
2
]∑

i=1

(r2)i

i!
· Γ(i+ 1)

Γ(i+ 3
2
)
· (n

2
+ i− 1) · · · n

2
·
Γ(n

2
+ i+ 1

2
)

Γ(n
2

+ i)
·
Γ(n

2
+ i+ 1

2
)

Γ(n
2

+ i+ 1)

≤ 2nb
√
π|r|

[n
2
]∑

i=1

(nr2)i

i!
· 1√

i+ 3
4

·
√
n

2
+ i · 1√

n
2

+ i+ 1
4

≤ 2nb|r|
√
πenr2

.

Therefore, we have, when r2 ≤ ( 1
2
−b−c) log n

n
:

aij ≤ −1 + I + III + |III ′|+ II + |II ′|

≤ −1 +
2nb

√
π√

n
2

+ 3
4

+ nb
∑
i>[n

2
]

√
2

n
(2r)2i +
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nb
∑
i>[n

2
]

1

n
|2r|2i+1 + 2nb

√
2πenr2 1√

n
+ 2nb|r|

√
πenr2

= −1 +O(n−(1/2−b)) +O(

√
log n

nc
),

which will tend to -1 when n tends to infinity.

Lemma 3.6. Under Assumption A3, for ∀n large enough,

1) If
∫ 1

0
g2(ρ)dρ = 0,

aij ≤ 0 ⇒ rij > −
√

2(a+ 1) log n

n
(3.8)

2) If
∫ 1

0
g2(ρ)dρ = 1,

aij ≤ 0 ⇒ rij <

√
2(a+ 1) log n

n
(3.9)

3) If 0 <
∫ 1

0
g2(ρ)dρ < 1,

aij ≤ 0 ⇒ r2
ij <

2(a+ 1) log n

n
. (3.10)

Proof. To prove (3.8), we show that when r ≤ −
√

2(a+1) log n
n

, aij(r) > 0 for any n

large enough. Notice that when
∫ 1

0
g2(ρ)dρ = 0, for any −1 < r ≤ −

√
2(a+1) log n

n
,

we have:
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aij = −1 +
∞∑
i=0

Γ2(n+2i
2

)22ir2i

Γ2(n
2
)(2i)!

∫ 0

−1

(1− ρ2)
n
2 ρ2ig1(ρ)dρ

+
∞∑
i=0

Γ2(n+2i+1
2

)22i+1r2i+1

Γ2(n
2
)(2i+ 1)!

∫ 0

−1

(1− ρ2)
n
2 ρ2i+1g1(ρ)dρ

> −1 +
∞∑
i=0

Γ2(n+2i
2

)22ir2i

Γ2(n
2
)(2i)!

∫ 1

0

(1− ρ2)
n
2 ρ2ig1(−ρ)dρ

By Assumption A3,

∞∑
i=0

Γ2(n+2i
2

)22ir2i

Γ2(n
2
)(2i)!

∫ 1

0

(1− ρ2)
n
2 ρ2ig1(−ρ)dρ

≥ n−a

[n
2
]∑

i=1

Γ2(n+2i
2

)22ir2i

Γ2(n
2
)(2i)!

·
Γ(n

2
+ 1)Γ(i+ 1

2
)

Γ(n
2

+ i+ 3
2
)

= n−a

[n
2
]∑

i=1

(2r)2i Γ(i+ 1
2
)

Γ(2i+ 1)
·
Γ(n+2i

2
)

Γ(n
2
)
·

Γ(n
2

+ i)

Γ(n
2

+ i+ 3
2
)
·
Γ(n

2
+ 1)

Γ(n
2
)

= n−a

[n
2
]∑

i=1

(2r)2i ·
√
π2−2i

Γ(i+ 1)
· (n

2
+ i− 1) · · · n

2
·

Γ(n
2

+ i)

Γ(n
2

+ i+ 1
2
)
·

n
2

n
2

+ i+ 1
2

≥ n−a
√
π

[n
2
]∑

i=1

r2i

i!
· (n

2
)i · 1√

n
2

+ i
· 1

3

≥ n−a
√
π

3

[n
2
]∑

i=1

(nr2/2)i

i!
· 1√

n

=
n−a

√
π

3

enr2/2

√
n

− 1√
n
−

∑
i>[n

2
]

(nr2/2)i

i!
· 1√

n

 .

Notice that
∑∞

i=0

Γ2(n+2i
2

)22ir2i

Γ2(n
2
)(2i)!

∫ 1

0
(1− ρ2)

n
2 ρ2ig1(−ρ)dρ is an decreasing function

of −1 < r ≤ −
√

2(a+1) log n
n

, when r = −
√

2(a+1) log n
n

, n−aenr2/2
√

n
=
√
n and, by
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Stirling’s formula, we have that,

∑
i>[n

2
]

(nr2/2)i

i!
· 1√

n
≤

∑
i>[n

2
]

(nr2/2)i

i( i
e
)i

· 1√
n
≤ 2

∑
i>[n

2
]

(er2)i · n−
3
2 ,

which will tend to zero for r = −
√

2(a+1) log n
n

and when n tends to infinity. There-

fore, we conclude that: for any −1 < r ≤ −
√

2(a+1) log n
n

, aij(r) > 0 for any n large

enough.

(3.9) can be proved similarly.

To prove (3.10), first of all, by looking at the density function frij |ρij
(r|ρ) we

have, for any −1 < r, ρ < 1:

∞∑
i=0

(2ρr)i

i!
Γ2(

n+ i

2
) > 0.

Therefore, for any −1 < r ≤ −
√

2(a+1) log n
n

,

aij > −1 +
∞∑
i=0

Γ2(n+i
2

)2iri

Γ2(n
2
)(i)!

∫ 0

−1

(1− ρ2)
n
2 ρig1(ρ)dρ

> −1 +
∞∑
i=0

Γ2(n+2i
2

)22ir2i

Γ2(n
2
)(2i)!

∫ 1

0

(1− ρ2)
n
2 ρ2ig1(−ρ)dρ,

which will be positive for any n large enough as shown before. Similarly, for any√
2(a+1) log n

n
≤ r < 1, we have,

aij > −1 +
∞∑
i=0

Γ2(n+i
2

)2iri

Γ2(n
2
)(i)!

∫ 1

0

(1− ρ2)
n
2 ρig2(ρ)dρ

> −1 +
∞∑
i=0

Γ2(n+2i
2

)22ir2i

Γ2(n
2
)(2i)!

∫ 1

0

(1− ρ2)
n
2 ρ2ig2(ρ)dρ,
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which will tend to be positive for any n large enough.

Particularly, if g is a bounded function (both from below and above for some

positive constants) with support [-1,1], we have a = b = 0 and the two lemmas

above implies that, for any n large enough, the threshold is within the interval:

( log n
2n
, 2 log n

n
).

The following observations will be used in the proof of consistency of ω̂1:

For any 1 ≤ i < j ≤ p, 1 ≤ s < t ≤ p,

No. of pairs {(i, j), (s, t)} =
p2(p− 1)2

4
;

No. of pairs {(i, j), (s, t) : i, j, s, t all distinct} =
p(p− 1)(p− 2)(p− 3)

4
;

No. of pairs{(i, j), (s, t) : (i, j) ∩ (s, t) = i or j} = p(p− 1)(p− 2);

No. of pairs{(i, j), (s, t) : i = s, j = t} =
p(p− 1)

2
.

Theorem 3.2. Under Assumptions A1-A4,

ω̂1 → ω, in probability as n and p → ∞.

Proof. First of all, by Markov’s inequality and Assumption A2, for any ε > 0,

P (| 2

p(p− 1)

∑
1≤i<j≤p

I{ρij 6=0} − (1− ω)| > ε)
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= P (| 2

p(p− 1)

∑
1≤i<j≤p

I{ρij 6=0} − E
2

p(p− 1)

∑
1≤i<j≤p

I{ρij 6=0}| > ε)

≤ ε−2V ar

[
2

p(p− 1)

∑
1≤i<j≤p

I{ρij 6=0}

]

=
4ε−2

p2(p− 1)2

[p(p− 1)

2
V ar(I{ρ12 6=0}) +

p(p− 1)(p− 2)Cov(I{ρ12 6=0}, I{ρ23 6=0}) +O(pν)
]

≤ 4ε−2

p2(p− 1)2

[
p(p− 1)

2
ω(1− ω) + p(p− 1)(p− 2)(1− ω)ω +O(pν)

]
,

where in the last step we have use Assumption A2 and the fact that

V ar(I{ρ12 6=0}) = ω(1− ω);

E(I{ρ12 6=0} − EI{ρ12 6=0})(I{ρ23 6=0} − EI{ρ23 6=0})

≤ [E(I{ρ12 6=0} − EI{ρ12 6=0})
2]

1
2 [E(I{ρ23 6=0} − EI{ρ23 6=0})

2]
1
2

= (1− ω)ω.

Therefore, 2
p(p−1)

∑
1≤i<j≤p I{ρij 6=0} converges in probability to 1 − ω as p tends to

infinity.

To prove that ω̂1 → ω in probability, it suffices to show that 1 − ω̂1 converge

to 2
p(p−1)

∑
1≤i<j≤p I{ρij 6=0} in probability. Now by Markov’s inequality we have, for

any constant ε > 0:

P (|1− ω̂1 −
2

p(p− 1)

∑
1≤i<j≤p

I{ρij 6=0}| > ε)

= P (
2

p(p− 1)
|

∑
1≤i<j≤p

[I{aij>0} − I{ρij 6=0}]| > ε)
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≤ 4

ε2p2(p− 1)2
E[

∑
1≤i<j≤p

(I{aij>0} − I{ρij 6=0})]
2.

Write

Yij = I{aij>0} − I{ρij 6=0}, ∀ 1 ≤ i < j ≤ p.

Notice that,

E(
∑

1≤i<j≤p

Yij)
2 ≤ p(p− 1)

2

∑
1≤i<j≤p

EY 2
ij =

p2(p− 1)2

4
EY 2

ij .

By Lemma 3.5, for any n large enough, we have:

EY 2
ij = P (aij > 0, ρij = 0) + P (aij ≤ 0, ρij 6= 0)

≤ P (r2
ij >

(1/2− b− c) log n

n
|ρij = 0)ω + P (0 < |ρij| ≤ n−

1
2
+v)

+P (aij ≤ 0, |ρij| > n−
1
2
+v).

Now, by Lemma 3.3, there exist constants d, f > 0, such that

P (r2
ij >

(1/2− b− c) log n

n
|ρij = 0) ≤ de−f log n = dn−f → 0.

By Assumption A4,

P (0 < |ρij| ≤ n−
1
2
+v) → 0.

If 0 <
∫ 1

0
g2(ρ)dρ < 1, by Lemma 3.3 and Lemma 3.6, for n large enough, there

exist l,m > 0, such that:

P (aij ≤ 0, |ρij| > n−
1
2
+v)
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= (1− ω)

∫ 1

n−
1
2+v

P (aij ≤ 0|ρij = ρ)dG(ρ) +

∫ −n−
1
2+v

−1

P (aij ≤ 0|ρij = ρ)dG(ρ)


≤ (1− ω)

[ ∫ 1

n−
1
2+v

P (r2
ij ≤

2(a+ 1) log n

n
|ρij = ρ)dG(ρ)

+

∫ −n−
1
2+v

−1

P (r2
ij ≤

2(a+ 1) log n

n
|ρij = ρ)dG(ρ)

]
≤ (1− ω)

[ ∫ 1

n−
1
2+v

P (|rij − ρij| >
1

2
n−

1
2
+v|ρij = ρ)dG(ρ)

+

∫ −n−
1
2+v

−1

P (|rij − ρij| >
1

2
n−

1
2
+v|ρij = ρ)dG(ρ)

]
≤ 2(1− ω)le−

m
2

n2v

,

which will converge to zero when n increases. Similarly, if
∫ 1

0
g2(ρ)dρ = 0 or 1, we

can show that P (aij ≤ 0, |ρij| > n−
1
2
+v) converges to zero as n tends to infinity.

Hence EY 2
ij → 0 and consequently,

P (|1− ω̂1 −
2

p(p− 1)

∑
1≤i<j≤p

I{ρij 6=0}| > ε) ≤ EY 2
ij/ε

2 → 0.

From the proof of Theorem 3.2, we know that for any constant c > 0, if we

choose the thresholding parameter t to be c
√

log n/n, we can estimate ω consis-

tently as n tends to infinity as long as Assumption A4 is satisfied. Notice that aij

can be written as:

aij = −1 +

∫ 1

−1
frij |ρij

(r|ρ)dG(ρ)

frij |ρij=0(r|ρ = 0)
. (3.11)
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Therefore our estimator ω̂1 is aiming to choose c based on comparing whether the

ratio between the marginal likelihood given ρ 6= 0 and the likelihood given ρ = 0

is greater than 1 or not. Practically, G(ρ) is usually unknown. However, all the

lemmas and Theorem 3.2 are valid for any prior such that Assumptions A1-A4 are

satisfied. Practically, we propose to threshold rij to be rijI{|rij |≤
√

2 log n/n}, 1 ≤ i <

j ≤ p and treat those nonzero rijI{|rij |≤
√

2 log n/n} as random samples from G(ρ).

Therefore we can achieve an estimator for g, say, ĝ, and construct an estimator:

ω̂1(ĝ). As long as ĝ(ρ) is a bounded function in [-1,1], ω̂1(ĝ) will be consistent in

estimating ω. More discussions will be given in Section 3.5.

3.4 Method-of-moments estimator

In this section, we assume that X1, ..., Xn satisfy the moment conditions (3.1)

and (3.2) introduced in Section 3.2. Similar to the last section, we first of all pro-

pose some assumptions on the marginal prior density for the p(p−1)/2 correlation

coefficients:

A5:

ρij ∼ ωδ0 + (1− ω)hij(ρ), 1 ≤ j < i ≤ p,

such that supθ∈(−1,1) h(ρ) <∞;
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A6: for any 1 ≤ j < i ≤ p, 1 ≤ t < s ≤ p, if {i, j} ∩ {s, t} = ∅, ρij is

independent of ρs,t.

A2∗ Since we are assuming the marginal prior densities of the ρij’s are the

same, a more natural assumption than A2 would be that, we assume the prior

distribution of ρij, 1 ≤ i < j ≤ p is invariant with respect to the subscripts.

Consequently, Assumption A2 becomes

ReE[(e−ikρij − Ee−ikρij)(eikρst − Eeikρst)] = o(1) as p→∞,∀ i, j, s, t : distinct.

Remark 3.2. Let Σ = R′R be the Cholesky decomposition of Σ with the matrix R

upper triangular. For any distribution of R such that the rows of R are independent

of each other, the corresponding distribution of Σ will satisfy Assumption A6.

Examples can be seen in Model 2 and Model 3 in the simulation study.

It is easy to see that Assumption A5 is slightly stronger than Assumptions A1,

A3 and A4. Assumption A6 is stronger than A2. We first look at the problem

under Assumptions A5 and A6. Later we will relax Assumption A6 to Assumption

A2.

For any positive integer q, we define a matrix-valued function Tq : (−1, 1) →
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C(q+1)×(q+1) by:

Tq(ρ) =



1 eiρ ei2ρ ... eiqρ

e−iρ 1 eiρ ... ei(q−1)ρ

e−i2ρ e−iρ 1 ... ei(q−2)ρ

...
...

...
. . .

...

e−iqρ e−i(q−1)ρ e−i(q−2)ρ ... 1



=



1

e−iρ

...

e−iqρ


(

1, eiρ, . . . , eiqρ

)
.

where i =
√
−1. Further define Mq = ETq(ρ) = Mq,disc +Mq,cont, where

Mq,disc = ωTq(0) =


ω · · · ω

...
. . .

...

ω · · · ω

 ,

Mq,cont = (1− ω)

∫ 1

−1

Tq(ρ)h(ρ)dρ.

Let λi(A) denote the ith largest eigenvalues of A where A is an arbitrary (q+1)×

(q + 1) Hermitian matrix.

Lemma 3.7. With the notation and assumptions of ρ given above, we have:

(i)λ1(Mq,disc) = (q + 1)ω and λi(Mq,disc) = 0 for all i = 2, ..., q + 1, and (ii):

0 ≤ λq+1(Mq,cont) ≤ λ1(Mq,cont) ≤ 2π(1− ω) sup
−1<ρ<1

h(ρ).
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Proof. (i) is straightforward. For (ii), let a = (a1, ..., aq+1)
′ ∈ C(q+1) and ā =

(ā1, ..., āq+1)
′ is the complex conjugate of a. Then

ā′Mq,conta

ā′a
=

(1− ω)
∑q+1

k=1

∑q+1
j=1

∫ 1

−1
akāje

i(k−j)ρh(ρ)dρ

ā′a

=
(1− ω)

∫ 1

−1
|
∑q+1

k=1 ake
ikρ|2h(ρ)dρ∑q+1

k=1 |ak|2

=
2π(1− ω)

∫ 1

−1
|
∑q+1

k=1 ake
ikρ|2h(ρ)dρ∫ π

−π
|
∑q+1

k=1 akeikρ|2dρ
.

Thus for arbitrary a ∈ C(q+1) such that |a| = 1,

0 ≤ λq+1(Mq,cont) ≤ λ1(Mq,cont) ≤ 2π(1− ω) sup
−1<ρ<1

h(ρ).

Theorem 3.3. With the above notation, we have:

0 ≤ λ1(Mq)

q + 1
− ω ≤

2π(1− ω) sup−1<ρ<1 h(ρ)

q + 1
.

Also, for i = 2, ..., q + 1,

0 ≤ λi(Mq)

q + 1
≤

2π(1− ω) sup−1<ρ<1 h(ρ)

q + 1
.

Proof. Since Mq = Mq,disc +Mq,cont, by Lemma 3.7 we have

λ1(Mq) ≥ λ1(Mq,disc) + λq+1(Mq,cont)

≥ (q + 1)ω,

λ1(Mq) ≤ λ1(Mq,disc) + λ1(Mq,cont)
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≤ (q + 1)ω + 2π(1− ω) sup
−1<ρ<1

h(ρ).

For i = 2, ..., q+ 1, by Lemma 3.7, Mq is nonnegative definite therefore 0 ≤ λi(Mq)

q+1
.

Also, by Theorem A.8. of Bai and Silverstein, we have,

λi(Mq) ≤ λi(Mq,disc) + λ1(Mq,cont)

≤ 2π(1− ω) sup
−1<ρ<1

h(ρ).

The following is an immediate corollary of Theorem 3.3.

Corollary 3.2. Suppose that sup−1<ρ<1 h(ρ) <∞. Then λ1(Mq)

q+1
→ ω as q →∞.

This corollary gives, at least in principle, a way for estimating ω by estimating

the largest eigenvalue of Mq for a sufficiently large q.

We estimate Mq by the (q + 1) × (q + 1) matrix M̂q whose (k, l)th element is

given by:

(M̂q)k,l =
2

p(p− 1)

∑
1≤j<i≤p

e−i(k−l)rij , ∀1 ≤ k, l ≤ q + 1.

Define

ω̂2 =
λ1(M̂q)

q + 1
.

Then we have:
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Proposition 3.1.

E |ω̂2 − ω| ≤ 2

q + 1

q∑
k=1

E|(M̂q −Mq)q+1,k|+
2π(1− ω)

q + 1
sup

θ∈(−1,1)

h(θ).

Proof. Denote the matrix norm induced by l1 − norm for vectors as ‖ A ‖1. We

have:

‖ A ‖1= max
1≤j≤q+1

q+1∑
i=1

|aij|,

which is the maximum absolute column sum of the matrix A. Write ρ(A) as the

spectral radius of A. We observe from Theorem 5.6.9 of Horn and Johnson (1985)

that

λ1(M̂q −Mq) ≤ ρ(M̂q −Mq)

≤ ‖ M̂q −Mq ‖1

≤ 2

q+1∑
k=1

|(M̂q −Mq)q+1,k|.

Let ẽ = (1/
√
q + 1, ..., 1/

√
q + 1). Then it follows from Theorem 3.3 that

λ1(M̂q) ≥ ẽ′Mq,discẽ+ ẽ′Mq,contẽ+ ẽ′(M̂q −Mq)ẽ

≥ (q + 1)ω − 1

q + 1

q+1∑
j=1

q+1∑
k=1

|(M̂q −Mq)j,k|

≥ (q + 1)ω − 2

q+1∑
k=1

|(M̂q −Mq)q+1,k|,

and

λ1(M̂q) ≤ λ1(Mq) + λ1(M̂q −Mq)
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≤ (q + 1)ω + 2π(1− ω) sup
−1<ρ<1

h(ρ) + 2

q+1∑
k=1

|(M̂q −Mq)q+1,k|.

Thus we have:

|λ1(M̂q)− (q + 1)ω| ≤ 2π(1− ω) sup
−1<ρ<1

h(ρ) + 2

q+1∑
k=1

|(M̂q −Mq)q+1,k|.

The theorem is proved by dividing q+ 1 on both sides of the above inequality.

Let the sample correlation matrix R = (rij)p×p and the population correlation

matrix Γ = (ρij)p×p be define as in Section 3.2. The following lemma will be used

in the proof of the main theorems of this section.

Lemma 3.8. With the notation of Section 3.2, we have

E(rij − ρij)
2 ≤ 8.5

n
E

(X4
i1

σ2
ii

+
X4

j1

σ2
jj

)
, ∀1 ≤ i, j ≤ p.

Proof. Denote EΣ as the conditional expectation given Σ. We observe that for

1 ≤ i, j ≤ and constant a > 0,

EΣ(rij − ρij)
2 ≤ EΣ

[
(rij − ρij)

2I{|sii−σii|≤σii/a}I{|sjj−σjj |≤σjj/a}
]

+4
∑
l=i,j

P (|sll − σll| > σll/a|Σ).

Notice that

P (|sll − σll| > σll/a|Σ) ≤ a2

σ2
ll

EΣ[
1

n

n∑
k=1

(X2
lk − σll)]

2

=
a2

nσ2
ll

EΣ(X2
l1 − σll)

2
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≤ a2

n
EΣ

X4
l1

σ2
ll

, l = i, j,

and

EΣ

[
(rij − ρij)

2I{|sii−σii|≤σii/a}I{|sjj−σjj |≤σjj/a}
]

≤ EΣ

( sij√
siisjj

− sij√
σiisjj

+
sij√
σiisjj

− sij√
σiiσjj

+
sij√
σiiσjj

− σij√
σiiσjj

)2

×I{|sii−σii|≤σii/a}I{|sjj−σjj |≤σjj/a}

= EΣ

{[ sij(σii − sii)

(
√
σii +

√
sii)

√
siiσiisjj

+
sij(σjj − sjj)

(
√
σjj +

√
sjj)

√
σiiσjjsjj

+
sij − σij√
σiiσjj

]2

×I{|sii−σii|≤σii/a}I{|sjj−σjj |≤σjj/a}
}

≤ EΣ

[ |σii − sii|
σii

+

√
1 + 1/a|σjj − sjj|

σjj

+
|sij − σij|√
σiiσjj

]2

≤ 3EΣ

[(σii − sii)
2

σ2
ii

+
(1 + 1/a)(σjj − sjj)

2

σ2
jj

+
(sij − σij)

2

σiiσjj

]
=

3

n

[EΣ(X2
i1 − σii)

2

σ2
ii

+
(1 + 1/a)EΣ(X2

j1 − σjj)
2

σ2
jj

+
EΣ(Xi1Xj1 − σij)

2

σiiσjj

]
≤ 1

n
EΣ

[9

2

X4
i1

σ2
ii

+ (
9

2
+ 3/a)

X4
j1

σ2
jj

]
,

where in the last step we have used the fact that

EΣ(Xi1Xj1 − σij)
2

σiiσjj

≤
EΣX

2
i1X

2
j1

σiiσjj

≤ 1

2
EΣ

(X4
i1

σ2
ii

+
X4

j1

σ2
jj

)
.

Consequently we conclude that

EΣ(rij − ρij)
2 ≤ 1

n
EΣ

[
(4a2 +

9

2
)
X4

i1

σ2
ii

+ (4a2 +
9

2
+

3

a
)
X4

j1

σ2
jj

]
.

By changing the indices i with j we have:

EΣ(rij − ρij)
2 ≤ 1

n
EΣ

[
(4a2 +

9

2
)
X4

j1

σ2
jj

+ (4a2 +
9

2
+

3

a
)
X4

i1

σ2
ii

]
.
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Therefore we conclude that

EΣ(rij − ρij)
2 ≤

8a2 + 9 + 3
a

2n
EΣ

[X4
i1

σ2
ii

+
X4

j1

σ2
jj

]
, ∀1 ≤ i, j ≤ p.

By letting a = (3/16)1/3, the right hand side of the above equation is minimized:

EΣ(rij − ρij)
2 ≤ 8.5

n
EΣ

[X4
i1

σ2
ii

+
X4

j1

σ2
jj

]
, ∀1 ≤ i, j ≤ p.

Lemma 3.8 is proved by taking expectation with respect to Σ in the above inequal-

ity.

Theorems 3.4, 3,5 and 3.6 are the main results of this section. They provide

upper bounds to the convergence rate of ω̂2.

Theorem 3.4. Suppose X1, ..., Xn are i.i.d. mean zero random vectors such that

0 < supi∈{1,2,..,}EX
4
i1/σ

2
ii <∞, where Xi1 is the ith element of X1 = (X11, ..., Xp1)

′.

Under Assumptions A5, A6 and with ω̂2 defined above, there exists a constant c > 0

large enough, such that

E |ω̂2 − ω| ≤ cq√
n

+
8
√
p

+
2π(1− ω)

q + 1
sup

ρ∈(−1,1)

h(ρ).

Particularly, when X1, ..., Xn are i.i.d. mean zero multivariate normal random

vectors, we have,

E |ω̂2 − ω| ≤ q√
n

+
8
√
p

+
2π(1− ω)

q + 1
sup

ρ∈(−1,1)

h(ρ).
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Proof. By Proposition 3.1, we only need to bound
∑q

k=1E|(M̂q −Mq)q+1,k|. Write

N = p(p− 1)/2, we have:

E|N−1
∑

1≤j<i≤p

(e−ikrij − Ee−ikρij)|2

= N−2
∑

1≤j<i≤p

∑
1≤t<s≤p

E(e−ikrij − Ee−ikρij)(eikrst − Eeikρst)

= N−2
∑

1≤j<i≤p

∑
1≤t<s≤p

E[(e−ikrij − e−ikρij)(eikrst − eikρst)

+(e−ikrij − e−ikρij)(eikρst − Eeikρst) + (e−ikρij − Ee−ikρij)(eikrst − eikρst)

+(e−ikρij − Ee−ikρij)(eikρst − Eeikρst)]

When {i, j} ∩ {s, t} = ∅, the last three terms in the above equation equal to zero

and

E(e−ikrij − e−ikρij)(eikrst − eikρst)

≤
√
E|(e−ikrij − e−ikρij)|2E|(e−ikrst − e−ikρst)|2

≤
√
E|e−ikρij(e−ik(rij−ρij) − 1)|2E|e−ikρst(e−ik(rst−ρst) − 1)|2

=
√
E|e−ik(rij−ρij) − 1|2E|e−ik(rst−ρst) − 1|2

= 2
√
E(1− cos k(rij − ρij))E(1− cos k(rst − ρst))

= 4
√
E sin2(k(rij − ρij)/2)E sin2(k(rst − ρst)/2)

≤ k2
√
E(rij − ρij)2E(rst − ρst)2.

By Lemma 3.8, there exists a constant c > 0, depending on supi∈{1,2,..,}EX
4
i1 only

such that for any 1 ≤ i, j ≤ p

E(rij − ρij)
2 ≤ c2

n
.
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When {i, j} ∩ {s, t} 6= ∅

Re(E(e−ikrij − Ee−ikρij)(eikrst − Eeikρst))

≤ E|(e−ikrij − Ee−ikρij)(eikrst − Eeikρst)|

≤ 4.

Therefore,

E|N−1
∑

1≤j<i≤p

(e−ikrij − Ee−ikρij)|2 ≤ c2k2

n
+

4p(p− 1)(p− 3
2
)

N2

<
c2k2

n
+

16

p
.

By Holder’s inequality we have:

q∑
k=1

E|(M̂q −Mq)q+1,k| ≤
q∑

k=1

(E|N−1
∑

1≤j<i≤p

(e−ikrij − Ee−ikρij)|2)
1
2

<

q∑
k=1

(
ck√
n

+
4
√
p
)

=
cq(q + 1)

2
√
n

+
4q
√
p
.

Consequently, by Proposition 3.1, we have

E |ω̂2 − ω| ≤ cq√
n

+
8
√
p

+
2π(1− ω)

q + 1
sup

ρ∈(−1,1)

h(ρ).

Particularly, when X1, ..., Xn are i.i.d. mean zero multivariate normal random

vectors, we observe from Kendall (1960) that given ρ

E(r − ρ)2 = (1− ρ2)2[
1

n
+

23ρ2

4n2
+ O(n−3)].
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Therefore, when {i, j} ∩ {s, t} = ∅,

E(e−ikrij − e−ikρij)(eikrst − eikρst) ≤ Ek2(rij − ρij)
2

≤ k2

n
+ O(k2n−2).

Therefore,

E |ω̂2 − ω|

≤ 2

q + 1

q∑
k=1

E|(M̂q −Mq)q+1,k|+
2π(1− ω)

q + 1
sup

ρ∈(−1,1)

h(ρ)

≤ 2

q + 1

q∑
k=1

(E|N−1
∑

1≤j<i≤p

(e−ikrij − Ee−ikρij)|2)
1
2 +

2π(1− ω)

q + 1
sup

ρ∈(−1,1)

h(ρ)

≤ 2

q + 1

q∑
k=1

(
k√
n

+
4
√
p

+ O(kn−1)) +
2π(1− ω)

q + 1
sup

ρ∈(−1,1)

h(ρ)

≤ q√
n

+
8
√
p

+ O(qn−1) +
2π(1− ω)

q + 1
sup

θ∈(−1,1)

h(θ).

By letting q = O(n1/4) in Theorem 3.4 we immediately have:

Corollary 3.3. Under the assumptions of Theorem 3.4, with ω̂2 defined above,

there exists a constant c > 0 large enough, such that

E |ω̂2 − ω| = O(
1

n1/4
∨ 1

p1/2
).

Next we relax Assumption A6 to Assumption A2 and prove the theorem.
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Theorem 3.5. Suppose X1, ..., Xn are i.i.d. mean zero random vectors such that

0 < supi∈{1,2,..,}EX
4
i1/σ

2
ii <∞, where Xi1 is the ith element of X1 = (X11, ..., Xp1)

′.

Under Assumptions A2 and A5, with ω̂2 defined above, there exists a constant c > 0

large enough, such that

E |ω̂2 − ω|

≤ cq√
n

+
4
√

2c(q + 1)

3n1/4
+

8
√
p

+O(
1

p2−ν/2
) +

2π(1− ω)

q + 1
sup

ρ∈(−1,1)

h(ρ).

Particularly, when X1, ..., Xn are i.i.d. mean zero multivariate normal random

vectors, we have,

E |ω̂2 − ω| ≤ q√
n

+
4
√

2(q + 1)

3n1/4
+

8
√
p

+O(
1

p2−ν/2
) +

2π(1− ω)

q + 1
sup

ρ∈(−1,1)

h(ρ).

Proof. Similar to the proof of Theorem 3.4, write N = p(p− 1)/2, we have:

E|N−1
∑

1≤j<i≤p

(e−ikrij − Ee−ikρij)|2

= N−2
∑

1≤j<i≤p

∑
1≤t<s≤p

E(e−ikrij − Ee−ikρij)(eikrst − Eeikρst)

= N−2
∑

1≤j<i≤p

∑
1≤t<s≤p

E[(e−ikrij − e−ikρij)(eikrst − eikρst)

+(e−ikrij − e−ikρij)(eikρst − Eeikρst) + (e−ikρij − Ee−ikρij)(eikrst − eikρst)

+(e−ikρij − Ee−ikρij)(eikρst − Eeikρst)].

By Lemma 3.8, there exists a constant c > 0 depending on supi∈{1,2,..,}EX
4
i1 only

such that for any 1 ≤ i, j ≤ p

E(rij − ρij)
2 ≤ c2

n
.
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Therefore, when {i, j} ∩ {s, t} = ∅,

Re[E(e−ikrij − e−ikρij)(eikrst − eikρst)]

≤
√
E|(e−ikrij − e−ikρij)|2E|(e−ikrst − e−ikρst)|2

≤
√
E|e−ikρij(e−ik(rij−ρij) − 1)|2E|e−ikρst(e−ik(rst−ρst) − 1)|2

=
√
E|e−ik(rij−ρij) − 1|2E|e−ik(rst−ρst) − 1|2

= 2
√
E(1− cos k(rij − ρij))E(1− cos k(rst − ρst))

= 4
√
E sin2(k(rij − ρij)/2)E sin2(k(rst − ρst)/2)

≤ k2
√
E(rij − ρij)2E(rst − ρst)2

≤ c2k2

n
.

Re[E(e−ikrij − e−ikρij)(eikρst − Eeikρst)]

≤
{
E|e−ikrij − e−ikρij |2E|eikρst − Eeikρst |2

} 1
2

≤ (E|e−ikrij − e−ikρij |2)
1
2

≤ (Ek2(rij − ρij)
2)

1
2

=
ck√
n
.

Similarly,

Re[E(e−ikρij − Ee−ikρij)(eikrst − eikρst)] ≤ ck√
n
.

Moreover,

Re[E(e−ikρij − Ee−ikρij)(eikρst − Eeikρst)] ≤ 4α(ρij, ρst).
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Therefore, by Assumption A2, we have,

N−2
∑

1≤j<i≤p,1≤t<s≤p,i,j,s,t:all distinct

E(e−ikrij − Ee−ikρij)(eikrst − Eeikρst)

≤ k2c2

n
+

2ck√
n

+O(
1

p4−ν
).

When {i, j} ∩ {s, t} 6= ∅

Re(E(e−ikrij − Ee−ikρij)(eikrst − Eeikρst))

≤ E|(e−ikrij − Ee−ikρij)(eikrst − Eeikρst)|

≤ 4.

Therefore,

E|N−1
∑

1≤j<i≤p

(e−ikrij − Ee−ikρij)|2

≤ k2c2

n
+

2ck√
n

+O(
1

p4−ν
) +

4p(p− 1)(p− 3
2
)

N2

<
k2c2

n
+

2ck√
n

+O(
1

p4−ν
) +

16

p
.

By Holder’s inequality we have:

q∑
k=1

E|(M̂q −Mq)q+1,k|

≤
q∑

k=1

(E|N−1
∑

1≤j<i≤p

(e−ikrij − Ee−ikρij)|2)
1
2

<

q∑
k=1

[
kc√
n

+

√
2ck

n1/4
+

4
√
p

+O(
1

p2−ν/2
)

]
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≤ cq(q + 1)

2
√
n

+
2
√

2c(q + 1)3/2

3n1/4
+

4q
√
p

+O(
q

p2−ν/2
).

Consequently, by Proposition 3.1, we have

E |ω̂2 − ω|

≤ cq√
n

+
4
√

2c(q + 1)

3n1/4
+

8
√
p

+O(
1

p2−ν/2
) +

2π(1− ω)

q + 1
sup

ρ∈(−1,1)

h(ρ).

Particularly, when X1, ..., Xn are i.i.d. mean zero multivariate normal random

vectors, same as the proof of Theorem 3.4, by using the following inequality,

E(r − ρ)2 ≤ 1

n
+O(

1

n2
),

we have:

E |ω̂2 − ω|

≤ 2

q + 1

q∑
k=1

E|(M̂q −Mq)q+1,k|+
2π(1− ω)

q + 1
sup

ρ∈(−1,1)

h(ρ)

≤ 2

q + 1

q∑
k=1

(E|N−1
∑

1≤j<i≤p

(e−ikrij − Ee−ikρij)|2)
1
2 +

2π(1− ω)

q + 1
sup

ρ∈(−1,1)

h(ρ)

≤ 2

q + 1

q∑
k=1

[ k√
n

+

√
2k

n1/4
+

4
√
p

+O(
1

p2−ν/2
) + O(kn−1 + k

1
2
n−

1
2 )

]
+

2π(1− ω)

q + 1
sup

ρ∈(−1,1)

h(ρ)

≤ q√
n

+
4
√

2(q + 1)

3n1/4
+

8
√
p

+O(
1

p2−ν/2
) +O(qn−1 + q

1
2n−

1
2 )

+
2π(1− ω)

q + 1
sup

θ∈(−1,1)

h(θ).
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By letting q = O(n1/6) in Theorem 3.5 we immediately have:

Corollary 3.4. Under assumptions of Theorem 3.5, there exists a constant c > 0

large enough, such that

E |ω̂2 − ω| = O

(
1

n1/6
∨ 1

p1/2∧(2−ν/2)

)
.

Similar to Theorem 3.5 we have,

Theorem 3.6. Suppose X1, ..., Xn are i.i.d. mean zero random vectors such that

0 < supi=1,2,...EX
4
i1/σ

2
ii < ∞. Under Assumptions A2∗, A5 and with ω̂2 defined

above, there exists a constant c > 0 depending on EX4
11/σ

2
ii only, such that

E |ω̂2 − ω| → 0 as p ∧ n→∞.

3.5 Numerical study

In practice, we need to determine the prior density g(ρ) to derive ω̂1(g), and

we need to choose a proper q for ω̂2.

Assuming that 0 < ω < 1. Instead of estimating ω, we look at the prob-

lem of estimate ω′ = ω − n−a for some positive constant a, and define g′(ρ) =

1−ω
1−ω′

g(ρ) + 1
2(1−ω′)

n−a. We can see that g′ satisfies Assumptions A3 and A4, and

therefore, (3.12), (3.13), (3.14) and (3.15) are true for aij(g
′). In addition, if
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Assumptions A1 and A2 are satisfied, ω̂1(g
′) is consistent in estimating ω′, or

ω. Therefore, to some degree, Assumptions A3 and A4 can be relaxed to be

supρ∈(−1,1) g(ρ) < ∞ if we replace our estimator by ω̂1(g
′). To compute ω̂1(g

′)

numerically, we threshold |rij|, 1 ≤ i < j ≤ p by 2
√

log n/n and use the empirical

cumulative distribution function(CDF), say Ĝ, of those nonzero rij as the CDF of

the prior of the continuous part of ρ, and construct an estimator ω̂1(dĜ). Notice

that Ĝ will satisfy Assumptions A1-A4 with probability tending to one as long

as supρ∈(−1,1) g(ρ) < ∞. Therefore, ω̂1(dĜ) is consistent in estimating ω. In the

simulation, if 2
p(p−1)

∑
1≤i<j≤p I{|rij |>2

√
log n/n} is very small, we set ω̂1 = 1.

For ω̂2, we choose q in the following way:

Step 1. Compute estimators for q = 1, ..., [2
√
n], write them as ω̂2(1),..., ω̂2([2

√
n]).

Step 2. For each ω̂2(q), denote Nq = [ω̂2(q)p(p − 1)/2], q = 1, ..., [2
√
n]. Let

r(1) ≤ ... ≤ r(p(p−1)/2) be the order statistics of |rij|, 1 ≤ i < j ≤ p and define

Λ̂q = {(i, j) : |rij| ≤ r(Nq), 1 ≤ i < j ≤ p}. Let Fq be the empirical CDF of

{rij : (i, j) ∈ Λ̂q, 1 ≤ i < j ≤ p}, q = 1, ..., [2
√
n]. Define the Kolmogorov-Smirnov

distance between Fq and F (x) as:

Dq = sup
0<x<1

|Fq(x)− F (x)|,

where F (x) is the CDF of rij given ρ = 0.
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Step 3. Choose q such that Dq is the minimum among D1, ..., D[2
√

n].

For the multivariate normal case, F is given by:

F (x) =

∫ x

−1

Γ[1
2
(n− 1)]

Γ[1
2
(n− 2)]

√
π

(1− x2)
1
2
(n−4).

In this simulation, we consider n = 100 and p = 50, 100, 200 for different types

of covariance matrices for the multivariate normal case over 100 replications. For a

given estimate ω̂ of ω, we threshold the [p(p− 1)/2ω̂] smallest (in term of absolute

value) sample correlation coefficients among all the p(p−1)/2 different off-diagonal

elements of the sample correlation matrix to be zero, and denote this estimator to

be T (R) = (tij)p×p. We compare our estimators to ω̂cv and ω̂acv representing the

estimator computed base on cross validation and adaptive cross validation under

Frobenius norm correspondingly. Similar to what we did in Section 2.7, we also

compute the following estimator in this simulation:

ω̂3 =


1, if {λ1(M̂q)− 1}/q > 1,

{λ1(M̂q)− 1}/q, if 0 ≤ {λ1(M̂q)− 1}/q ≤ 1,

0, if {λ1(M̂q)− 1}/q < 0,

(3.12)

Same as what we have discussed in Section 2.7, |ω̂2(q) − ω̂3(q)| ≤ 1
q
, therefore

similar results in Section 3.4 can be obtained for ω̂3.

Mean and its standard deviation of the following quantities over 100 replications

are computed and compared:
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1)Error1=
∑

1≤i<j≤p I{ρij=0,tij 6=0}, i.e., it counts the number of times of estimat-

ing zero to be nonzero.

2)Error2=
∑

1≤i<j≤p I{ρij 6=0,tij=0}, i.e., it counts the number of times of estimat-

ing nonzero to be zero.

3)l1-loss: |estimator− ω|

Let Σ be the population covariance matrix.

Model 1 Σ = (σij)1≤i,j≤p, where σij = σ for any 1 ≤ i, j ≤ p/2, i 6= j, σii = 1,

i = 1, ...p and σij = 0 otherwise. We set σ = 0.2, 0.5.

Model 2 Σ = TT ′ where T = (tij)p×p is a lower triangular matrix with tii =

0.01, i = 1, ..., p and tij = U(0, 1) × Ber(0.05), 1 ≤ j < i ≤ p. Here U(0, 1)

representing a random variable uniformly distributed in (0, 1) and Ber(0.05) is a

Bernoulli random variable which takes value 1 with probability 0.05 and 0 with

probability 0.95. This way of generating the population covariance matrix ensures

positive definiteness and introduces zeros in Σ. Furthermore, the nonzero elements

in the off-diagonal of the population correlation matrix will be able to cover values

from 0 to 1.

Model 3 We generate Σ based on Lemma 3 of Wong, Carter and Kohn (2003).

They derived the marginal distribution for the correlation coefficients under their
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model (adopting their notation):

p(dCij|C{−ij}) = I{|Cij−a|<b
√

c}
I{Cij=0} + (dCij)h(J{−ij})

I{|a|<b
√

c} + 2b
√
ch(J{−ij})

.

where C = (Cij)p×p is a correlation matrix and C−{ij} = {Cst, 1 ≤ t < s ≤

p, (s, t) 6= (i, j)}.

When i = p and j = p − 1, let C = R′R be the Cholesky decomposition of C

with the matrix R upper triangular. a, b, c are defined as:

a =

p−2∑
j=1

Rj,p−1Rj,p, b = Rp−1,p−1, c = Cpp −
p−2∑
j=1

R2
j,p;

For other values of i, j, we can always permute the indices i, j with p, p− 1. From

Lemma 1 of Wong, Carter and Kohn (2003), we observe that to ensure the positive

definiteness of matrix C, Cij can only be chosen within the interval: (−b
√
c +

a, b
√
c + a). Thus Lemma 3 in their paper to some degree provides a way of

adapting Cij to be 0 with some positive probability if 0 ∈ (−b
√
c+a, b

√
c+a) and

Cij ∼ U(−b
√
c + a, b

√
c + a) otherwise. We modify the marginal distribution of

Cij to be:

p(dCij|C{−ij}) = I{|Cij−a|<b
√

c}
I{Cij=0} + (dCij)H

I{|a|<b
√

c} + 2b
√
cH

.

where H is a constant. We generate C using Gibbs sampling for:

Model 3.1H = 0.8 and p = 50. We run the chain for 10000 times with initial

value: C(0) = Ip. Write the resulting samples of C as: C(1), ..., C(10000). Let
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Σ = C(10000). The corresponding proportion of zeros in Σ in our simulation is:

ω = 0.7428571.

Model 3.2H = 0.8 and p = 100. We run the chain for 10000 times with initial

value: C(0) = (Cij)p×p, where Cij = 0.9|i−j|, 1 ≤ i, j ≤ p. Let Σ = C(10000). The

corresponding proportion of zeros in Σ in our simulation is: ω = 0.77111111.

Model 3.3H = 0.8 and p = 200. We run the chain for 10000 times with initial

value: C(0) = (Cij)p×p, where Cij = 0.9|i−j|, 1 ≤ i, j ≤ p. Let Σ = C(10000). The

corresponding proportion of zeros in Σ in our simulation is: ω = 0.8201005.

For the l1-loss, under Model 1 σ = 0.2 case and Model 2, both ω̂1 and ω̂2 out-

perform ω̂cv and ω̂acv. In fact, from Tables 3.1-3.3, we can see that cross validation

methods tends to over threshold when σ = 0.2, which is relatively small. Under

Model 1, we can also see that the l1-loss of ω̂2 is slightly smaller when p is larger.

In all cases, ω̂1 has smaller l1-loss than ω̂cv and ω̂acv. ω̂2 and ω̂3 are very close as

expected. There are no significant differences between these two estimators. When

the nonzero σij’s are relatively small, ω̂2 outperforms ω̂1 ω̂cv and ω̂acv, while when

the nonzero σ’s are relatively far away from 0, ω̂2 has a larger l1-loss due to bias.
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p = 50 ω̂1 ω̂2 ω̂3 ω̂cv ω̂acv

l1-loss(sd) 0.062(0.003) 0.033(0.003) 0.033(0.003) 0.158(0.006) 0.217(0.007)

Error1(sd) 37.5(0.9) 90.3(2.7) 89.1(2.8) 21.9(3.5) 16.3(6.1)

Error2(sd) 114.1(3.1) 104.5(3.4) 105.0(3.4) 203.3(6.9) 262.8(8.1)

Table 3.1 Summary of simulation results over 100 replications under Model 1 when

p = 50, ω=0.755102 and σ = 0.2.

p = 100 ω̂1 ω̂2 ω̂3 ω̂cv ω̂acv

l1-loss(sd) 0.068(0.002) 0.025(0.002) 0.025(0.002) 0.163(0.006) 0.218(0.008)

Error1(sd) 147.8(2.5) 352.5(7.7) 354.2(7.7) 66.3(8.8) 84.6(30.1)

Error2(sd) 483.2(11.3) 443.3(9.9) 443.4(10.4) 862.7(25.4) 1058.8(35.3)

Table 3.2 Summary of simulation results over 100 replications under Model 1 when

p = 100, ω=0.7525253 and σ = 0.2.

p = 200 ω̂1 ω̂2 ω̂3 ω̂cv ω̂acv

l1-loss(sd) 0.073(0.002) 0.025(0.002) 0.023(0.002) 0.174(0.006) 0.219(0.008)

Error1(sd) 595.4(4.5) 1415.8(26.3) 1452.9(28.1) 217.6(30.9) 125.9(34.0)

Error2(sd) 2049.4(48.0) 1886.2(40.7) 1862.2(39.9) 3634.1(99.0) 4477.2(118.2)

Table 3.3 Summary of simulation results over 100 replications under Model 1 when

p = 200, ω=0.7512563 and σ = 0.2.
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p = 50 ω̂1 ω̂2 ω̂3 ω̂cv ω̂acv

l1-loss(sd) 0.006(0.001) 0.025(0.002) 0.026(0.002) 0.010(0.001) 0.015(0.002)

Error1(sd) 8.0(0.6) 21.4(3.1) 21.9(3.1) 13.2(1.3) 19.1(2.1)

Error2(sd) 0.3(0.1) 10.8(1.5) 10.3(1.7) 1.7(0.4) 1.0(0.2)

Table 3.4 Summary of simulation results over 100 replications under Model 1 when

p = 50, ω=0.755102 and σ = 0.5.

p = 100 ω̂1 ω̂2 ω̂3 ω̂cv ω̂acv

l1-loss(sd) 0.006(<0.001) 0.019(0.001) 0.020(0.002) 0.008(0.001) 0.015(0.002)

Error1(sd) 32.6(2.0) 64.4(8.0) 72.0(9.1) 47.2(3.9) 79.6(7.8)

Error2(sd) 0.8(0.2) 30.8(4.8) 28.2(4.8) 8.5(1.5) 4.0(0.7)

Table 3.5 Summary of simulation results over 100 replications under Model 1 when

p = 100, ω=0.7525253 and σ = 0.5.

p = 200 ω̂1 ω̂2 ω̂3 ω̂cv ω̂acv

l1-loss(sd) 0.006(<0.001) 0.011(0.001) 0.012(0.001) 0.008(0.001) 0.009(0.001)

Error1(sd) 122.0(6.5) 160.7(17.7) 194.2(24.0) 182.0(15.5) 201.6(15.7)

Error2(sd) 2.3(0.4) 68.4(12.9) 57.6(9.6) 26.2(4.3) 14.4(2.1)

Table 3.6 Summary of simulation results over 100 replications under Model 1 when

p = 200, ω=0.7512563 and σ = 0.5.



3.5 Numerical study 121

p = 50 ω̂1 ω̂2 ω̂3 ω̂cv ω̂acv

l1-loss(sd) 0.020(0.001) 0.028(0.002) 0.028(0.002) 0.054(0.003) 0.028(0.002)

Error1(sd) 12.5(0.8) 26.4(3.2) 25.6(3.1) 1.4(0.2) 14.9(3.5)

Error2(sd) 35.8(0.3) 41.1(1.2) 40.8(1.1) 67.5(0.3) 39.3(0.5)

Table 3.7 Summary of simulation results over 100 replications under Model 2 when

p = 50, ω=0.9306122.

p = 100 ω̂1 ω̂2 ω̂3 ω̂cv ω̂acv

l1-loss(sd) 0.048(0.001) 0.047(0.002) 0.048(0.002) 0.073(0.001) 0.061(0.001)

Error1(sd) 68.9(2.0) 88.3(7.0) 87.3(7.3) 46.9(1.8) 38.6(3.5)

Error2(sd) 304.1(0.9) 330.6(3.2) 321.8(3.3) 406.8(1.2) 341.4(2.2)

Table 3.8 Summary of simulation results over 100 replications under Model 2 when

p = 100, ω=0.8911111.

p = 200 ω̂1 ω̂2 ω̂3 ω̂cv ω̂acv

l1-loss(sd) 0.109(<0.001) 0.099(0.002) 0.099(0.002) 0.166(0.001) 0.158(0.001)

Error1(sd) 382.8(5.6) 619.9(25.7) 625.0(26.9) 50.9(8.8) 35.9(4.3)

Error2(sd) 2548.5(4.4) 2592.4(13.2) 2593(13.6) 3341.8(34.6) 3181.1(14.9)

Table 3.9 Summary of simulation results over 100 replications under Model 2 when

p = 200, ω=0.8125628.
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p = 50 ω̂1 ω̂2 ω̂3 ω̂cv ω̂acv

l1-loss(sd) 0.175(0.001) 0.138(0.002) 0.138(0.002) 0.195(0.002) 0.203(0.002)

Error1(sd) 27.1(0.7) 36.1(1.4) 35.6(1.4) 7.8(0.7) 7.6(1.1)

Error2(sd) 241.4(0.5) 204.7(1.2) 25.0(1.2) 246.9(1.5) 256.4(2.0)

Table 3.10 Summary of simulation results over 100 replications under Model 3.1,

where ω = 0.7428571.

p = 100 ω̂1 ω̂2 ω̂3 ω̂cv ω̂acv

l1-loss(sd) 0.166(<0.001) 0.161(0.001) 0.162(0.001) 0.205(<0.001) 0.227(<0.001)

Error1(sd) 141.7(1.4) 109.2(2.8) 106.5(2.8) 16.5(0.6) 0.6(0.2)

Error2(sd) 962.2(1.0) 906.9(2.3) 908.6(2.2) 1030.4(1.7) 1125.9(1.7)

Table 3.11 Summary of simulation results over 100 replications under Model 3.2,

where ω = 0.77111111.

p = 200 ω̂1 ω̂2 ω̂3 ω̂cv ω̂acv

l1-loss(sd) 0.126(<0.001) 0.146(<0.001) 0.146(0.001) 0.168<0.001) 0.180(<0.001)

Error1(sd) 652.6(4.3) 289.3(4.9) 285.9(2.8) 61.0(1.8) 0.3(0.1)

Error2(sd) 3150.8(1.8) 3188.9(3.2) 3193.6(2.2) 3408.1(2.7) 3577.8(0.8)

Table 3.12 Summary of simulation results over 100 replications under Model 3.3,

where ω = 0.8201005.
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CHAPTER 4

Conclusion

This study established consistent parameter estimation for the sparsity of a

sparse signal sequence and the sparsity of a sparse covariance matrix.

In Chapter 2, we modeled the sparse signal sequence by (2.1) and (2.2) and pro-

posed a method-of-moments estimator for the sparsity parameter ω0. Particularly,

different from most of the literature, ω0 is assumed to be any number in (0, 1] and

the noise is assumed to be strong mixing and possibly non-Gaussian. To evaluate

our estimator, upper bounds of the expected L1 loss of our estimator were derived.

In addition, when the noise is assumed to be known, we derived lower bounds for

the minimax risk of estimating ω0. By comparing the upper and lower bounds,



124

we concluded that our estimator achieves the optimal minimax convergence rate

when the density of the noise is supersmooth. Simulation studies showed that our

estimator performs well for different values of ω0 and different types of noise distri-

butions. In finite sample simulations, when the true ω0 is large, meaning the signal

sequence is very sparse, our estimator loses a bit to the empirical Bayes estimators.

This might be due to the fact that the bias of our estimator is of order q−1, which

can be seen from Proposition 2.1.

In Chapter 3, we estimated the sparsity of a sparse covariance matrix or corre-

lation matrix. We proposed two estimators: (1) ω̂1, an empirical Bayes estimator;

(2) ω̂2, a method-of-moments estimator. ω̂1 is derived under Gaussian assumption

while ω̂2 is more general. Consistency of these two estimators was proved. Simula-

tion studies were carried out with a comparison to ω̂cv and ω̂acv, the thresholding

estimators derived from cross validation and adaptive cross validation methods re-

spectively. Our estimators performed well in the simulations we conducted. More

specifically, under the models we studied in the simulations, when the non-zero

elements in the population correlation matrix were small, ω̂2 outperformed ω̂1, ω̂cv

and ω̂acv. When most of the non-zero elements of the population correlation ma-

trix were large, ω̂1, ω̂cv and ω̂acv performed well since the non-zero elements were

relatively far away from 0. As for ω̂2, it was still able to estimate ω well but lost a

bit to other estimators. This might be due to the fact that the bias of ω̂2 is of order
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q−1, which can be seen from Theorem 3.3. In addition, ω̂1 outperformed the cross

validation and adaptive cross validation estimators in all the cases we simulated.

The following are two open problems for future work:

1. How to estimate the signal sequence when the sparsity of the sequence is

known or can be well estimated?

2. How to estimate the population covariance matrix or population correlation

matrix when the sparsity of the matrix is known or can be well estimated?
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