52 research outputs found

    Sapiens Chain: A Blockchain-based Cybersecurity Framework

    Full text link
    Recently, cybersecurity becomes more and more important due to the rapid development of Internet. However, existing methods are in reality highly sensitive to attacks and are far more vulnerable than expected, as they are lack of trustable measures. In this paper, to address the aforementioned problems, we propose a blockchain-based cybersecurity framework, termed as Sapiens Chain, which can protect the privacy of the anonymous users and ensure that the transactions are immutable by providing decentralized and trustable services. Integrating semantic analysis, symbolic execution, and routing learning methods into intelligent auditing, this framework can achieve good accuracy for detecting hidden vulnerabilities. In addition, a revenue incentive mechanism, which aims to donate participants, is built. The practical results demonstrate the effectiveness of the proposed framework

    A Strategy Optimization Approach for Mission Deployment in Distributed Systems

    Get PDF
    In order to increase operational efficiency, reduce delays, and/or maximize profit, almost all the organizations have split their mission into several tasks which are deployed in distributed system. However, due to distributivity, the mission is prone to be vulnerable to kinds of cyberattacks. In this paper, we propose a mission deployment scheme to optimize mission payoff in the face of different attack strategies. Using this scheme, defenders can achieve “appropriate security” and force attackers to jointly safeguard the mission situation

    Research on CRO's Dilemma In Sapiens Chain: A Game Theory Method

    Full text link
    In recent years, blockchain-based techniques have been widely used in cybersecurity, owing to the decentralization, anonymity, credibility and not be tampered properties of the blockchain. As one of the decentralized framework, Sapiens Chain was proposed to protect cybersecurity by scheduling the computational resources dynamically, which were owned by Computational Resources Owners (CROs). However, when CROs in the same pool attack each other, all CROs will earn less. In this paper, we tackle the problem of prisoner's dilemma from the perspective of CROs. We first define a game that a CRO infiltrates another pool and perform an attack. In such game, the honest CRO can control the payoffs and increase its revenue. By simulating this game, we propose to apply Zero Determinant (ZD) strategy on strategy decision, which can be categorized into cooperation and defecting. Our experimental results demonstrate the effectiveness of the proposed strategy decision method

    DA-PFL: Dynamic Affinity Aggregation for Personalized Federated Learning

    Full text link
    Personalized federated learning becomes a hot research topic that can learn a personalized learning model for each client. Existing personalized federated learning models prefer to aggregate similar clients with similar data distribution to improve the performance of learning models. However, similaritybased personalized federated learning methods may exacerbate the class imbalanced problem. In this paper, we propose a novel Dynamic Affinity-based Personalized Federated Learning model (DA-PFL) to alleviate the class imbalanced problem during federated learning. Specifically, we build an affinity metric from a complementary perspective to guide which clients should be aggregated. Then we design a dynamic aggregation strategy to dynamically aggregate clients based on the affinity metric in each round to reduce the class imbalanced risk. Extensive experiments show that the proposed DA-PFL model can significantly improve the accuracy of each client in three real-world datasets with state-of-the-art comparison methods
    corecore