19 research outputs found

    Design and Experimental Evaluation of Composite Magnesium Phosphate Cement-Based Coating with High Cooling Effect

    No full text
    The application of surface heat reflective coatings is one of the effective measures to solve the temperature disease of concrete structures in sunlit environments. To achieve strong bonding, high durability, and good cooling characteristics, a novel inorganic reflective thermal insulation coating was prepared using magnesium phosphate cement (MPC) as the binder and reflective matrix, and titanium dioxide and glass beads as the reflective thermal insulation reinforcement functional additives. The optimum ratio of the new reflective thermal insulation coating was preferred through laboratory irradiation test, thermal conductivity test, and spectral reflectance test. The results show that MPC itself was a good reflection cooling material, and the surface and internal temperatures of concrete blocks were reduced by 7.6 °C and 6.6 °C, respectively, after using MPC as the cooling coating. When 2% titanium dioxide was added to MPC, the surface and internal temperatures were further reduced by 6.0 °C and 4.9 °C, respectively. On top of this, the surface and internal temperatures of the concrete were reduced by a further 3.9 °C and 2.2 °C when 8% glass beads were added. The bond strength of the MPCTG coating to the concrete matrix reached 2.1 MPa. Finally, the microscopic characteristics and the reflective thermal insulation mechanism of the MPCTG coating were investigated with the aid of SEM, thermo gravimetric analysis, and XRD analysis. The results show that the MPC in the MPCTG coating was well hydrated, and a large number of hydration products encapsulated the unreacted MgO particles, titanium dioxide, and glass beads, forming a dense whole with high reflection and low thermal conductivity, and the coating effectively prevented the entry of radiant heat. At the same time, the MPCTG coating was thermally stable below 70 °C. The magnesium phosphate cement-based reflective thermal insulation coating developed in this study has potential application prospects in concrete structure cooling coatings

    Design and Experimental Evaluation of Composite Magnesium Phosphate Cement-Based Coating with High Cooling Effect

    No full text
    The application of surface heat reflective coatings is one of the effective measures to solve the temperature disease of concrete structures in sunlit environments. To achieve strong bonding, high durability, and good cooling characteristics, a novel inorganic reflective thermal insulation coating was prepared using magnesium phosphate cement (MPC) as the binder and reflective matrix, and titanium dioxide and glass beads as the reflective thermal insulation reinforcement functional additives. The optimum ratio of the new reflective thermal insulation coating was preferred through laboratory irradiation test, thermal conductivity test, and spectral reflectance test. The results show that MPC itself was a good reflection cooling material, and the surface and internal temperatures of concrete blocks were reduced by 7.6 °C and 6.6 °C, respectively, after using MPC as the cooling coating. When 2% titanium dioxide was added to MPC, the surface and internal temperatures were further reduced by 6.0 °C and 4.9 °C, respectively. On top of this, the surface and internal temperatures of the concrete were reduced by a further 3.9 °C and 2.2 °C when 8% glass beads were added. The bond strength of the MPCTG coating to the concrete matrix reached 2.1 MPa. Finally, the microscopic characteristics and the reflective thermal insulation mechanism of the MPCTG coating were investigated with the aid of SEM, thermo gravimetric analysis, and XRD analysis. The results show that the MPC in the MPCTG coating was well hydrated, and a large number of hydration products encapsulated the unreacted MgO particles, titanium dioxide, and glass beads, forming a dense whole with high reflection and low thermal conductivity, and the coating effectively prevented the entry of radiant heat. At the same time, the MPCTG coating was thermally stable below 70 °C. The magnesium phosphate cement-based reflective thermal insulation coating developed in this study has potential application prospects in concrete structure cooling coatings

    Experimental Investigation of the Desalination Process for Direct Contact Membrane Distillation Using Plate and Frame Membrane Module

    No full text
    Through experiments, the effect of membrane material selection and operating conditions on permeate fluxes in direct contact membrane distillation (DCMD) desalination was investigated. The experiment used a plate and frame membrane module, and with nine different hydrophobic porous membranes, a comparative analysis of the desalination performance of 3 wt% NaCl solution was performed. The results of this experiment were compared to find out the effect of different materials, pore sizes and membrane thicknesses on the permeate flux under same operating conditions. Further, a three-factor, three-level orthogonal experiment was designed. The effects of hot-side temperature, hot-side inlet flow and cold-side inlet flow on the permeate flux of PTFE membranes with a pore size of 0.22 μm were investigated when the temperature on the cold side was set at 20 °C. The results showed that in the DCMD experiments, both PTFE and PVDF membranes performed well, and that hot-side inlet temperatures and cold-side inlet flow rates had significant effects on the permeate flux

    Delimitating the Natural City with Points of Interests Based on Service Area and Maximum Entropy Method

    No full text
    The natural city, which is essential to understand urban physical scale and identify urban sprawling in urban studies, represents the urban functional boundaries of the city defined by human activities rather than the administrative boundaries. Most studies tend to utilize physical environment data such as street networks and remote sensing data to delimitate the natural city, however, such data may not match the real distribution of human activity density in the new cities or even ghost cities in China. This paper suggests aggregating the natural city boundary from the service area polygons of points of interest based on Reilly’s Law of Retail Gravitation and the maximum entropy method, since most points of interests provide services for surrounding communities, reflecting the vitality in a bottom-up way. The results indicate that the natural city defined by points of interests shows a high resolution and accuracy, providing a method to define the natural city with POIs

    An engineered lamellar bone mimicking full-scale hierarchical architecture for bone regeneration

    No full text
    Lamellar bone, compactly and ingeniously organized in the hierarchical pattern with 6 ordered scales, is the structural motif of mature bone. Each hierarchical scale exerts an essential role in determining physiological behavior and osteogenic bioactivity of bone. Engineering lamellar bone with full-scale hierarchy remains a longstanding challenge. Herein, using bioskiving and mineralization, we attempt to engineer compact constructs resembling full-scale hierarchy of lamellar bone. Through systematically investigating the effect of mineralization on physicochemical properties and bioactivities of multi-sheeted collagen matrix fabricated by bioskiving, the hierarchical mimicry and hierarchy-property relationship are elucidated. With prolongation of mineralization, hierarchical mimicry and osteogenic bioactivity of constructs are performed in a bidirectional manner, i.e. first rising and then descending, which is supposed to be related with transformation of mineralization mechanism from nonclassical to classical crystallization. Construct mineralized 9 days can accurately mimic each hierarchical scale and efficiently promote osteogenesis. Bioinformatic analysis further reveals that this construct potently activates integrin α5-PI3K/AKT signaling pathway through mechanical and biophysical cues, and thereby repairing critical-sized bone defect. The present study provides a bioinspired strategy for completely resembling complex hierarchy of compact mineralized tissue, and offers a critical research model for in-depth studying the structure-function relationship of bone
    corecore