36 research outputs found

    Cytokine-Based Generation of CD49a+Eomes−/+ Natural Killer Cell Subsets

    Get PDF
    Recent studies have identified CD49a+Eomes− and CD49a+Eomes+ subsets of tissue-resident NK (trNK) cells in different organs of the mouse. However, the characteristics of CD49a+Eomes−/+ NK cell development and the regulation of Eomes expression in NK cells remain unclear. Here, we established an in vitro cytokine-based feeder-free system in which bone marrow progenitor cells differentiate into CD49a+ NK cells. IL-15 was identified as being the key cytokine in this system that supported the development and maintenance of CD49a+ NK cells. The CD49a+ NK cells generated were Eomes−CD49b− and shared the same phenotype as hepatic trNK cells. IL-4 induced the expression of Eomes in generated NK cells and converted them into CD49a+Eomes+ cells, which were phenotypically and functionally similar to uterine trNK cells. Moreover, the IL-4/STAT6 axis was identified as being important in the generation of CD49a+Eomes+ induced NK cells. Collectively, these studies describe an approach to generate CD49a+Eomes−/+ subsets of NK cells and demonstrate important roles for IL-15 and IL-4 in the differentiation of these cells. These findings have potential for developmental research underlying the generation of different subsets of NK cells and the application of adoptive NK cell transfer therapies

    The driving factors of spatial differences on the whole life cycle carbon emissions of the construction industry: from the analysis perspective of total factor productivity

    Get PDF
    The energy saving and emissions reduction of the construction industry are crucial for China to achieve the “carbon peaking and carbon neutrality” goals. In order to promote the green development of the life cycle of the construction industry and improve the efficiency of emissions reduction. This paper examines the spatial-temporal distribution of life cycle carbon emissions in China’s construction industry (LCCECI) from 2004 to 2018. It uses the SBM-Malmquist total factor productivity (TFP) index to measure technological progress and establishes the spatial econometric model based on the STIRPAT model. The study investigates the driving factors of the LCCECI at the provincial and regional levels, aiming to provide suggestions for low-carbon development in the construction industry. The research results are as follows. ① The growth in the SBM-Malmquist TFP index of the construction industry distinctly curbs the LCCECI. ② Total population and urbanization level are not the primary driving factors for the LCCECI. The growth of per capita GDP significantly induces the LCCECI, while concurrently exhibiting a notable inhibitory effect on the LCCECI of neighboring regions. ③ The improvement of the SBM-Malmquist TFP index is conducive to the reduction of the LCCECI in the three major regions. The per capita GDP has the largest positive driving effect of the LCCECI in the eastern region, and the urbanization level the urbanization rate only significantly inhibits the growth of the LCCECI in the central region

    GraphScope Flex: LEGO-like Graph Computing Stack

    Full text link
    Graph computing has become increasingly crucial in processing large-scale graph data, with numerous systems developed for this purpose. Two years ago, we introduced GraphScope as a system addressing a wide array of graph computing needs, including graph traversal, analytics, and learning in one system. Since its inception, GraphScope has achieved significant technological advancements and gained widespread adoption across various industries. However, one key lesson from this journey has been understanding the limitations of a "one-size-fits-all" approach, especially when dealing with the diversity of programming interfaces, applications, and data storage formats in graph computing. In response to these challenges, we present GraphScope Flex, the next iteration of GraphScope. GraphScope Flex is designed to be both resource-efficient and cost-effective, while also providing flexibility and user-friendliness through its LEGO-like modularity. This paper explores the architectural innovations and fundamental design principles of GraphScope Flex, all of which are direct outcomes of the lessons learned during our ongoing development process. We validate the adaptability and efficiency of GraphScope Flex with extensive evaluations on synthetic and real-world datasets. The results show that GraphScope Flex achieves 2.4X throughput and up to 55.7X speedup over other systems on the LDBC Social Network and Graphalytics benchmarks, respectively. Furthermore, GraphScope Flex accomplishes up to a 2,400X performance gain in real-world applications, demonstrating its proficiency across a wide range of graph computing scenarios with increased effectiveness

    Arabidopsis RIC1 Severs Actin Filaments at the Apex to Regulate Pollen Tube Growth

    No full text
    Pollen tubes deliver sperms to the ovule for fertilization via tip growth. The rapid turnover of F-actin in pollen tube tips plays an important role in this process. In this study, we demonstrate that Arabidopsis thaliana RIC1, a member of the ROP-interactive CRIB motif-containing protein family, regulates pollen tube growth via its F-actin severing activity. Knockout of RIC1 enhanced pollen tube elongation, while overexpression of RIC1 dramatically reduced tube growth. Pharmacological analysis indicated that RIC1 affected F-actin dynamics in pollen tubes. In vitro biochemical assays revealed that RIC1 directly bound and severed F-actin in the presence of Ca(2+) in addition to interfering with F-actin turnover by capping F-actin at the barbed ends. In vivo, RIC1 localized primarily to the apical plasma membrane (PM) of pollen tubes. The level of RIC1 at the apical PM oscillated during pollen tube growth. The frequency of F-actin severing at the apex was notably decreased in ric1-1 pollen tubes but was increased in pollen tubes overexpressing RIC1. We propose that RIC1 regulates F-actin dynamics at the apical PM as well as the cytosol by severing F-actin and capping the barbed ends in the cytoplasm, establishing a novel mechanism that underlies the regulation of pollen tube growth

    Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting

    Full text link
    Multivariate time series (MTS) forecasting plays an important role in the automation and optimization of intelligent applications. It is a challenging task, as we need to consider both complex intra-variable dependencies and inter-variable dependencies. Existing works only learn temporal patterns with the help of single inter-variable dependencies. However, there are multi-scale temporal patterns in many real-world MTS. Single inter-variable dependencies make the model prefer to learn one type of prominent and shared temporal patterns. In this paper, we propose a multi-scale adaptive graph neural network (MAGNN) to address the above issue. MAGNN exploits a multi-scale pyramid network to preserve the underlying temporal dependencies at different time scales. Since the inter-variable dependencies may be different under distinct time scales, an adaptive graph learning module is designed to infer the scale-specific inter-variable dependencies without pre-defined priors. Given the multi-scale feature representations and scale-specific inter-variable dependencies, a multi-scale temporal graph neural network is introduced to jointly model intra-variable dependencies and inter-variable dependencies. After that, we develop a scale-wise fusion module to effectively promote the collaboration across different time scales, and automatically capture the importance of contributed temporal patterns. Experiments on four real-world datasets demonstrate that MAGNN outperforms the state-of-the-art methods across various settings.Comment: Accepted by TKD

    Dracorhodin perchlorate regulates fibroblast proliferation to promote rat's wound healing

    No full text
    In recent years, plant-derived extracts are increasing interest from researchers worldwide due to good efficacy and lower side effects. Among the different plant extracts, Dracorhodin perchlorate (DP) is originated from Dragon's blood which has long been used as a natural medicine with various pharmacological activities. In the present study, we have explored the potential regulation of DP on fibroblast proliferation which promotes wound healing both in vitro and in vivo. DP at treatment of 12–24 h significantly induced fibroblast proliferation which is associated with increasing level of phosphorylated-extracellular signal-regulated kinase (ERK). Moreover, if ERK is halted with siRNA, DP cannot induce fibroblast proliferation. In vivo, DP ointment treatment at low- (2.5 μg/mL), medium- (5 μg/mL) and high-(10 μg/mL) doses, rat wounds healed more rapidly compared with the control group. After DP treatment for 7 days, Serpin family H member 1 (SERPINH1) staining confirmed enhanced fibroblast proliferation in the wound tissue. Finally, phosphorylated-ERK in the wound tissue remarkably increased with DP ointment treatment. Therefore, DP may be developed into a potential lead compounds for the treatment of wounds in clinical trials in the near future. Keywords: Dracorhodin perchlorate, Fibroblasts, ERK, Rat model, Wound healin

    Effect of Frankincense Extract on Nerve Recovery in the Rat Sciatic Nerve Damage Model

    No full text
    This study investigated the effect of frankincense extract on peripheral nerve regeneration in a crush injury rat model. Forty-eight Sprague-Dawley rats were randomly divided into four groups: control and frankincense extract low-, medium-, and high-dose groups. At days 7, 14, 21, and 28 following the surgery, nerve regeneration and functional recovery were evaluated using the sciatic functional index (SFI), expression of GAP-43, and the proliferation of Schwann cells (SCs) in vivo and in vitro. At day 7, the SFI in the frankincense extract high-dose group was significantly improved compared with the control group. After day 14, SFI was significantly improved in the medium- and high-dose groups. There was no significant difference in GAP-43 expression among the groups at day 7. However, after day 14, expression of GAP-43 in the high-dose group was higher than that in the control group. Histological evaluation showed that the injured nerve of frankincense extract high-dose group recovered better than the other groups 28 days after surgery. Further, S100 immunohistochemical staining, MTT colorimetry, and flow cytometry assays all showed that frankincense extract could promote the proliferation of SCs. In conclusion, frankincense extract is able to promote sciatic nerve regeneration and improve the function of a crushed sciatic nerve. This study provides a new direction for the repair of peripheral nerve injury

    Roles of the Siglec family in bone and bone homeostasis

    No full text
    Tremendous progress has been seen in the study of the role of sialic acid binding im-munoglobulin type lectins (Siglecs) in osteoimmunology in the past two decades. Interest in Siglecs as immune checkpoints has grown from the recognition that Siglecs have relevance to human disease. Siglecs play important roles in inflammation and cancer, and play key roles in immune cell signaling. By recognizing common sialic acid containing glycans on glycoproteins and glycolipids as regulatory receptors for immune cell signals, Siglecs are expressed on most immune cells and play important roles in normal homeostasis and self-tolerance. In this review, we describe the role that the siglec family plays in bone and bone homeostasis, including the regulation of osteoclast differentiation as well as recent advances in inflammation, cancer and osteoporosis. Particular emphasis is placed on the relevant functions of Siglecs in self-tolerance and as pattern recognition receptors in immune responses, thereby potentially providing emerging strategies for the treatment of bone related diseases
    corecore