2 research outputs found

    High-Temperature Experimental and Theoretical Study of the Unimolecular Dissociation of 1,3,5-Trioxane

    No full text
    Unimolecular dissociation of 1,3,5-trioxane was investigated experimentally and theoretically over a wide range of conditions. Experiments were performed behind reflected shock waves over the temperature range of 775–1082 K and pressures near 900 Torr using a high-repetition rate time of flight mass spectrometer (TOF-MS) coupled to a shock tube (ST). Reaction products were identified directly, and it was found that formaldehyde is the sole product of 1,3,5-trioxane dissociation. Reaction rate coefficients were extracted by the best fit to the experimentally measured concentration–time histories. Additionally, high-level quantum chemical and RRKM calculations were employed to study the falloff behavior of 1,3,5-trioxane dissociation. Molecular geometries and frequencies of all species were obtained at the B3LYP/cc-pVTZ, MP2/cc-pVTZ, and MP2/aug-cc-pVDZ levels of theory, whereas the single-point energies of the stationary points were calculated using coupled cluster with single and double excitations including the perturbative treatment of triple excitation (CCSD­(T)) level of theory. It was found that the dissociation occurs via a concerted mechanism requiring an energy barrier of 48.3 kcal/mol to be overcome. The new experimental data and theoretical calculations serve as a validation and extension of kinetic data published earlier by other groups. Calculated values for the pressure limiting rate coefficient can be expressed as log<sub>10</sub> <i>k</i><sub>∞</sub> (s<sup>–1</sup>) = [15.84 – (49.54 (kcal/mol)/2.3<i>RT</i>)] (500–1400 K)

    Theoretical Study of the Reaction Kinetics of Atomic Bromine with Tetrahydropyran

    No full text
    A detailed theoretical analysis of the reaction of atomic bromine with tetrahydropyran (THP, C<sub>5</sub>H<sub>10</sub>O) was performed using several ab initio methods and statistical rate theory calculations. Initial geometries of all species involved in the potential energy surface of the title reaction were obtained at the B3LYP/cc-pVTZ level of theory. These molecular geometries were reoptimized using three different meta-generalized gradient approximation (meta-GGA) functionals. Single-point energies of the stationary points were obtained by employing the coupled-cluster with single and double excitations (CCSD) and fourth-order Møller–Plesset (MP4 SDQ) levels of theory. The computed CCSD and MP4­(SDQ) energies for optimized structures at various DFT functionals were found to be consistent within 2 kJ mol<sup>–1</sup>. For a more accurate energetic description, single-point calculations at the CCSD­(T)/CBS level of theory were performed for the minimum structures and transition states optimized at the B3LYP/cc-pVTZ level of theory. Similar to other ether + Br reactions, it was found that the tetrahydropyran + Br reaction proceeds in an overall endothermic addition–elimination mechanism via a number of intermediates. However, the reactivity of various ethers with atomic bromine was found to vary substantially. In contrast with the 1,4-dioxane + Br reaction, the chair form of the addition complex (<i>c</i>-C<sub>5</sub>H<sub>10</sub>O–Br) for THP + Br does not need to undergo ring inversion to form a boat conformer (<i>b</i>-C<sub>4</sub>H<sub>8</sub>O<sub>2</sub>–Br) before the intramolecular H-shift can occur to eventually release HBr. Instead, a direct, yet more favorable route was mapped out on the potential energy surface of the THP + Br reaction. The rate coefficients for all relevant steps involved in the reaction mechanism were computed using the energetics of coupled cluster calculations. On the basis of the results of the CCSD­(T)/CBS//B3LYP/cc-pVTZ level of theory, the calculated overall rate coefficients can be expressed as <i>k</i><sub>ov.,calc.</sub>(<i>T</i>) = 4.60 × 10<sup>–10</sup> exp­[−20.4 kJ mol<sup>–1</sup>/(<i>RT</i>)] cm<sup>3</sup> molecule<sup>–1</sup> s<sup>–1</sup> for the temperature range of 273–393 K. The calculated values are found to be in excellent agreement with the experimental data published previously
    corecore