2,563 research outputs found

    Radial Mixing in Galactic Discs

    Full text link
    We show that spiral waves in galaxy discs churn the stars and gas in a manner that largely preserves the overall angular momentum distribution and leads to little increase in random motion. Changes in the angular momenta of individual stars are typically as large as ~50% over the lifetime of the disk. The changes are concentrated around the corotation radius for an individual spiral wave, but since transient waves with a wide range of pattern speeds develop in rapid succession, the entire disk is affected. This behaviour has profound consequences for the metallicity gradients with radius in both stars and gas. The ISM is also stirred by the same mechanism. We find observational support for stirring, propose a simple model for the distribution of stars over metallicity and age, and discuss other possible consequences.Comment: Accepted to appear in MNRAS, 13 pages, 16 figures, LaTeX uses mn2e.cls Minor additions to text and one extra figur

    The distribution of two-dimensional eccentricity of Sunyaev-Zeldovich Effect and X-ray surface brightness profiles

    Full text link
    With the triaxial density profile of dark matter halos and the corresponding equilibrium gas distribution, we derive two-dimensional Sunyaev-Zeldovich (SZ) effect and X-ray surface brightness profiles for clusters of galaxies. It is found that the contour map of these observables can be well approximated by a series of concentric ellipses with scale-dependent eccentricities. The statistical distribution of their eccentricities (or equivalently axial ratios) is analyzed by taking into account the orientation of clusters with respect to the line of sight and the distribution of the axial ratios and the concentration parameters of dark matter halos. For clusters of mass 1013h−1M⊙10^{13}h^{-1}{M}_{\odot} at redshift z=0z=0, the axial ratio is peaked at η∌0.9\eta \sim 0.9 for both SZ and X-ray profiles. For larger clusters, the deviation from circular distributions is more apparent, with η\eta peaked at η∌0.85\eta \sim 0.85 for M=1015h−1M⊙M=10^{15}h^{-1}{M}_{\odot}. To be more close to observations, we further study the axial-ratio distribution for mass-limited cluster samples with the number distribution of clusters at different redshifts described by a modified Press-Schechter model. For a mass limit of value Mlim=1014h−1M⊙M_{lim}=10^{14}h^{-1}{M}_{\odot}, the average axial ratio is ∌0.84 \sim 0.84 with a tail extended to η∌0.6\eta \sim 0.6. With fast advance of high quality imaging observations of both SZ effect and X-ray emissions, our analyses provide a useful way to probe cluster halo profiles and therefore to test theoretical halo-formation models.Comment: 28 pages, 6 figures. Accepted for publication in the Astrophysical Journa

    The Planetary Nebula System and Dynamics in the Outer Halo of NGC 5128

    Full text link
    The halos of elliptical galaxies are faint and difficult to explore, but they contain vital clues to both structure and formation. We present the results of an imaging and spectroscopic survey for planetary nebulae (PNe) in the nearby elliptical NGC 5128. We extend the work of Hui et al.(1995) well into the halo of the galaxy--out to distances of 100 and 50 kpc along the major and minor axes. We now know of 1141 PNe in NGC 5128, 780 of which are confirmed. Of these 780 PNe, 349 are new from this survey, and 148 are at radii beyond 20 kpc. PNe exist at distances up to 80 kpc (~15 r_e), showing that the stellar halo extends to the limit of our data. This study represents by far the largest kinematic study of an elliptical galaxy to date, both in the number of velocity tracers and in radial extent. We confirm the large rotation of the PNe along the major axis, and show that it extends in a disk-like feature into the halo. The rotation curve of the stars flattens at ~100 km/s with V/sigma between 1 and 1.5, and with the velocity dispersion of the PNe falling gradually at larger radii. The two-dimensional velocity field exhibits a zero-velocity contour with a pronounced twist, showing that the galaxy potential is likely triaxial in shape, tending toward prolate. The total dynamical mass of the galaxy within 80 kpc is ~5 x 10^{11} M_sun, with M/L_B ~ 13. This mass-to-light ratio is much lower than what is typically expected for elliptical galaxies.Comment: 21 pages, 13 figures (figures 3-8 best viewed in color), accepted for publication in the Astrophysical Journa

    A New Estimate of the Hubble Time with Improved Modeling of Gravitational Lenses

    Full text link
    This paper examines free-form modeling of gravitational lenses using Bayesian ensembles of pixelated mass maps. The priors and algorithms from previous work are clarified and significant technical improvements are made. Lens reconstruction and Hubble Time recovery are tested using mock data from simple analytic models and recent galaxy-formation simulations. Finally, using published data, the Hubble Time is inferred through the simultaneous reconstruction of eleven time-delay lenses. The result is H_0^{-1}=13.7^{+1.8}_{-1.0} Gyr.Comment: 24 pages, 9 figures. Accepted to Ap

    Getting the astrophysics and particle physics of dark matter out of next-generation direct detection experiments

    Get PDF
    The next decade will bring massive new data sets from experiments of the direct detection of weakly interacting massive particle (WIMP) dark matter. The primary goal of these experiments is to identify and characterize the dark-matter particle species. However, mapping the data sets to the particle-physics properties of dark matter is complicated not only by the considerable uncertainties in the dark-matter model, but by its poorly constrained local distribution function (the "astrophysics" of dark matter). In this Letter, I propose a shift in how to do direct-detection data analysis. I show that by treating the astrophysical and particle physics uncertainties of dark matter on equal footing, and by incorporating a combination of data sets into the analysis, one may recover both the particle physics and astrophysics of dark matter. Not only does such an approach yield more accurate estimates of dark-matter properties, but may illuminate how dark matter coevolves with galaxies.Comment: 4 pages, 4 figures, replaced to match version accepted by Phys. Rev.

    Black Hole Motion as Catalyst of Orbital Resonances

    Full text link
    The motion of a black hole about the centre of gravity of its host galaxy induces a strong response from the surrounding stellar population. We treat the case of a harmonic potential analytically and show that half of the stars on circular orbits in that potential shift to an orbit of lower energy, while the other half receive a positive boost and recede to a larger radius. The black hole itself remains on an orbit of fixed amplitude and merely acts as a catalyst for the evolution of the stellar energy distribution function f(E). We show that this effect is operative out to a radius of approx 3 to 4 times the hole's influence radius, R_bh. We use numerical integration to explore more fully the response of a stellar distribution to black hole motion. We consider orbits in a logarithmic potential and compare the response of stars on circular orbits, to the situation of a `warm' and `hot' (isotropic) stellar velocity field. While features seen in density maps are now wiped out, the kinematic signature of black hole motion still imprints the stellar line-of-sight mean velocity to a magnitude ~18% the local root mean-square velocity dispersion sigma.Comment: revised version, typos fixed, added references, 20 pages MN styl

    The proper motion of the Arches cluster with Keck Laser-Guide Star Adaptive Optics

    Get PDF
    We present the first measurement of the proper motion of the young, compact Arches cluster near the Galactic center from near-infrared adaptive optics (AO) data taken with the recently commissioned laser-guide star (LGS) at the Keck 10-m telescope. The excellent astrometric accuracy achieved with LGS-AO provides the basis for a detailed comparison with VLT/NAOS-CONICA data taken 4.3 years earlier. Over the 4.3 year baseline, a spatial displacement of the Arches cluster with respect to the field population is measured to be 24.0 +/- 2.2 mas, corresponding to a proper motion of 5.6 +/- 0.5 mas/yr or 212 +/- 29 km/s at a distance of 8 kpc. In combination with the known line-of-sight velocity of the cluster, we derive a 3D space motion of 232 +/- 30 km/s of the Arches relative to the field. The large proper motion of the Arches cannot be explained with any of the closed orbital families observed in gas clouds in the bar potential of the inner Galaxy, but would be consistent with the Arches being on a transitional trajectory from x1 to x2 orbits. We investigate a cloud-cloud collision as the possible origin for the Arches cluster. The integration of the cluster orbit in the potential of the inner Galaxy suggests that the cluster passes within 10 pc of the supermassive black hole only if its true GC distance is very close to its projected distance. A contribution of young stars from the Arches cluster to the young stellar population in the inner few parsecs of the GC thus appears increasingly unlikely. The measurement of the 3D velocity and orbital analysis provides the first observational evidence that Arches-like clusters do not spiral into the GC. This confirms that no progenitor clusters to the nuclear cluster are observed at the present epoch.Comment: 22 pdflatex pages including 12 figures, reviewed version accepted by Ap

    What will Gaia tell us about the Galactic disk?

    Full text link
    Gaia will provide parallaxes and proper motions with accuracy ranging from 10 to 1000 microarcsecond on up to one billion stars. Most of these will be disk stars: for an unreddened K giant at 6 kpc, it will measure the distance accurate to 15% and the transverse velocity to an accuracy of about 1 km/s. Gaia will observe tracers of Galactic structure across the whole HR diagram, including Cepheids, RR Lyrae, white dwarfs, F dwarfs and HB stars. Onboard low resolution spectrophotometry will permit -- in addition to a Teff estimate -- dwarf/giant discrimination, metallicity measurement and extinction determination. For the first time, then, Gaia will provide us with a 3D spatial/properties map and at least a 2D velocity map of these tracers (RVs will be obtained too for brighter stars.) This will be a goldmine of information from which to learn about the origin and evolution of the Galactic disk. I briefly review the Gaia mission, and then show how the expected astrometric accuracies translate into distance and velocity accuracies and statistics. I examine the impact Gaia should have on a few scientific areas relevant to the Galactic disk. I discuss how a better determination of the spiral arm locations and pattern speed, plus a better reconstruction of the Sun's orbit over the past billion years (from integration through the Gaia-measured gravitational potential) will allow us to assess the possible role of spiral arm crossings in ice ages and mass extinctions on the Earth.Comment: Proceedings of IAU 254 "The Galaxy disk in a cosmological context", Copenhagen, June 2008, invited talk, 8 pages. This version: corrected K giant distance accurac

    Cooling flows and quasars: different aspects of the same phenomenon? I. Concepts

    Full text link
    We present a new class of solutions for the gas flows in elliptical galaxies containing massive central black holes (BH). Modified King model galaxies are assumed. Two source terms operate: mass loss from evolving stars, and a secularly declining heating by SNIa. Relevant atomic physical processes are modeled in detail. Like the previous models investigated by Ciotti et al. (1991), these new models first evolve through three consecutive evolutionary stages: wind, outflow, and inflow. At this point the presence of the BH alters dramatically the subsequent evolution, because the energy emitted by the BH can heat the surrounding gas to above virial temperatures, causing the formation of a hot expanding central bubble. Short and strong nuclear bursts of radiation are followed by longer periods during which the X-ray galaxy emission comes from the coronal gas (Lx). The range and approximate distribution spanned by Lx are found to be in accordance with observations of X-ray early type galaxies. Moreover, although high accretion rates occur during bursting phases when the central BH has a luminosity characteristic of QSOs, the total mass accreted is very small when compared to that predicted by stationary cooling-flow solutions and computed masses are in accord with putative BH nuclear masses. In the bursting phases Lx is low and the surface brightness profile is very low compared to pre-burst or to cooling flow models. We propose that these new models, while solving some long-standing problems of the cooling flow scenario, can provide a unified description of QSO-like objects and X-ray emitting elliptical galaxies, these being the same objects observed at two different evolutionary phases.Comment: 10 pages, ApJ LaTeX, plus 5 .eps figures and TeX-macro aasms4.sty - revised version - in press on ApJ Letter

    Accretion by the Galaxy

    Get PDF
    Cosmology requires at least half of the baryons in the Universe to be in the intergalactic medium, much of which is believed to form hot coronae around galaxies. Star-forming galaxies must be accreting from their coronae. HI observations of external galaxies show that they have HI halos associated with star formation. These halos are naturally modelled as ensembles of clouds driven up by supernova bubbles. These models can fit the data successfully only if clouds exchange mass and momentum with the corona. As a cloud orbits, it is ablated and forms a turbulent wake where cold high-metallicity gas mixes with hot coronal gas causing the prompt cooling of the latter. As a consequence the total mass of HI increases. This model has recently been used to model the Leiden-Argentina-Bonn survey of Galactic HI. The values of the model's parameters that are required to model NGC 891, NGC 2403 and our Galaxy show a remarkable degree of consistency, despite the very different natures of the two external galaxies and the dramatic difference in the nature of the data for our Galaxy and the external galaxies. The parameter values are also consistent with hydrodynamical simulations of the ablation of individual clouds. The model predicts that a galaxy that loses its cool-gas disc for instance through a major merger cannot reform it from its corona; it can return to steady star formation only if it can capture a large body of cool gas, for example by accreting a gas-rich dwarf. Thus the model explains how major mergers can make galaxies "red and dead."Comment: Invited review at "Assembling the Puzzle of the Milky Way", Grand Bornand, April 2011; 6 page
    • 

    corecore