26 research outputs found

    Analysis of complete mitochondrial genomes from extinct and extant rhinoceroses reveals lack of phylogenetic resolution

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The scientific literature contains many examples where DNA sequence analyses have been used to provide definitive answers to phylogenetic problems that traditional (non-DNA based) approaches alone have failed to resolve. One notable example concerns the rhinoceroses, a group for which several contradictory phylogenies were proposed on the basis of morphology, then apparently resolved using mitochondrial DNA fragments.</p> <p>Results</p> <p>In this study we report the first complete mitochondrial genome sequences of the extinct ice-age woolly rhinoceros (<it>Coelodonta antiquitatis</it>), and the threatened Javan (<it>Rhinoceros sondaicus</it>), Sumatran (<it>Dicerorhinus sumatrensis</it>), and black (<it>Diceros bicornis</it>) rhinoceroses. In combination with the previously published mitochondrial genomes of the white (<it>Ceratotherium simum</it>) and Indian (<it>Rhinoceros unicornis</it>) rhinoceroses, this data set putatively enables reconstruction of the rhinoceros phylogeny. While the six species cluster into three strongly supported sister-pairings: (i) The black/white, (ii) the woolly/Sumatran, and (iii) the Javan/Indian, resolution of the higher-level relationships has no statistical support. The phylogenetic signal from individual genes is highly diffuse, with mixed topological support from different genes. Furthermore, the choice of outgroup (horse <it>vs </it>tapir) has considerable effect on reconstruction of the phylogeny. The lack of resolution is suggestive of a hard polytomy at the base of crown-group Rhinocerotidae, and this is supported by an investigation of the relative branch lengths.</p> <p>Conclusion</p> <p>Satisfactory resolution of the rhinoceros phylogeny may not be achievable without additional analyses of substantial amounts of nuclear DNA. This study provides a compelling demonstration that, in spite of substantial sequence length, there are significant limitations with single-locus phylogenetics. We expect further examples of this to appear as next-generation, large-scale sequencing of complete mitochondrial genomes becomes commonplace in evolutionary studies.</p> <p><it>"The human factor in classification is nowhere more evident than in dealing with this superfamily (Rhinocerotoidea)." G. G. Simpson (1945)</it></p

    Species-specific responses of Late Quaternary megafauna to climate and humans

    Get PDF
    Despite decades of research, the roles of climate and humans in driving the dramatic extinctions of large-bodied mammals during the Late Quaternary remain contentious. We use ancient DNA, species distribution models and the human fossil record to elucidate how climate and humans shaped the demographic history of woolly rhinoceros, woolly mammoth, wild horse, reindeer, bison and musk ox. We show that climate has been a major driver of population change over the past 50,000 years. However, each species responds differently to the effects of climatic shifts, habitat redistribution and human encroachment. Although climate change alone can explain the extinction of some species, such as Eurasian musk ox and woolly rhinoceros, a combination of climatic and anthropogenic effects appears to be responsible for the extinction of others, including Eurasian steppe bison and wild horse. We find no genetic signature or any distinctive range dynamics distinguishing extinct from surviving species, underscoring the challenges associated with predicting future responses of extant mammals to climate and human-mediated habitat change.This paper is in the memory of our friend and colleague Dr. Andrei Sher, who was a major contributor of this study. Dr Sher died unexpectedly, but his major contributions to the field of Quaternary science will be remembered and appreciated for many years to come. We are grateful to Dr. Adrian Lister and Dr. Tony Stuart for guides and discussions. Thanks to Tina B. Brandt, Dr. Bryan Hockett and Alice Telka for laboratory help and samples and to L. Malik R. Thrane for his work on the megafauna locality database. Data taken from the Stage 3 project was partly funded by Grant #F/757/A from the Leverhulme Trust, together with a grant from the McDonald Grants and Awards Fund. We acknowledge the Danish National Research Foundation, the Lundbeck Foundation, the Danish Council for Independent Research and the US National Science Foundation for financial suppor

    800 000 year old mammoth DNA, modern elephant DNA or PCR artefact?

    No full text
    Poulakakis and colleagues (Poulakakis et al. 2006: Biol. Lett. 2, 451–454), report the recovery of ‘authentic’ mammoth DNA from an 800 000-year-old fragment of bone excavated on the island of Crete. In light of results from other ancient DNA studies that indicate how DNA survival is unlikely in samples, which are recovered from warm environments and are relatively old (e.g. more than 100 000 years), these findings come as a great surprise. Here, we show that problems exist with the methodological approaches used in the study. First, the nested PCR technique as reported is nonsensical—one of the second round ‘nested’ primers falls outside the amplicon of the first round PCR. More worryingly, the binding region of one of the first round primers (Elcytb320R) falls within the short 43 base pair reported mammoth sequence, specifically covering two of the three reportedly diagnostic Elephas polymorphisms. Finally, we demonstrate using a simple Blast search in GenBank that the claimed ‘uniquely derived character state’ for mammoths is in fact also found within modern elephants

    Investigating OA monograph services: Final report

    Get PDF
    A project to explore potential future services to support open-access (OA) monograph publishing, funded by Jisc Collections and conducted by Jisc Collections and OAPEN Foundation, with representation from UK universities, independent publishers, and others
    corecore