5 research outputs found

    Prognostic Model Development with Missing Labels - A Condition-Based Maintenance Approach Using Machine Learning

    Get PDF
    Condition-based maintenance (CBM) has emerged as a proactive strategy for determining the best time for maintenance activities. In this paper, a case of a milling process with imperfect maintenance at a German automotive manufacturer is considered. Its major challenge is that only data with missing labels are available, which does not provide a sufficient basis for classical prognostic maintenance models. To overcome this shortcoming, a data science study is carried out that combines several analytical methods, especially from the field of machine learning (ML). These include time-domain and time–frequency domain techniques for feature extraction, agglomerative hierarchical clustering and time series clustering for unsupervised pattern detection, as well as a recurrent neural network for prognostic model training. With the approach developed, it is possible to replace decisions that were made based on subjective criteria with data-driven decisions to increase the tool life of the milling machines. The solution can be employed beyond the presented case to similar maintenance scenarios as the basis for decision support and prognostic model development. Moreover, it helps to further close the gap between ML research and the practical implementation of CBM

    Federated learning enables big data for rare cancer boundary detection.

    Get PDF
    Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing

    Author Correction: Federated learning enables big data for rare cancer boundary detection.

    Get PDF
    10.1038/s41467-023-36188-7NATURE COMMUNICATIONS14

    Federated Learning Enables Big Data for Rare Cancer Boundary Detection

    Get PDF
    Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing

    Comparison of perioperative automated versus manual two-dimensional tumor analysis in glioblastoma patients.

    No full text
    OBJECTIVES Current recommendations for the measurement of tumor size in glioblastoma continue to employ manually measured 2D product diameters of enhancing tumor. To overcome the rater dependent variability, this study aimed to evaluate the potential of automated 2D tumor analysis (ATA) compared to highly experienced rater teams in the workup of pre- and postoperative image interpretation in a routine clinical setting. MATERIALS AND METHODS From 92 patients with newly diagnosed GB and performed surgery, manual rating of the sum product diameter (SPD) of enhancing tumor on magnetic resonance imaging (MRI) contrast enhanced T1w was compared to automated machine learning-based tumor analysis using FLAIR, T1w, T2w and contrast enhanced T1w. RESULTS Preoperative correlation of SPD between two rater teams (1 and 2) was r=0.921 (p<0.0001). Difference among the rater teams and ATA (p=0.567) was not statistically significant. Correlation between team 1 vs. automated tumor analysis and team 2 vs. automated tumor analysis was r=0.922 and r=0.897, respectively (p<0.0001 for both). For postoperative evaluation interrater agreement between team 1 and 2 was moderate (Kappa 0.53). Manual consensus classified 46 patients as completely resected enhancing tumor. Automated tumor analysis agreed in 13/46 (28%) due to overestimation caused by hemorrhage and choroid plexus enhancement. CONCLUSIONS Automated 2D measurements can be promisingly translated into clinical trials in the preoperative evaluation. Immediate postoperative SPD evaluation for extent of resection is mainly influenced by postoperative blood depositions and poses challenges for human raters and ATA alike
    corecore