5,797 research outputs found
Spinning test particles and clock effect in Kerr spacetime
We study the motion of spinning test particles in Kerr spacetime using the
Mathisson-Papapetrou equations; we impose different supplementary conditions
among the well known Corinaldesi-Papapetrou, Pirani and Tulczyjew's and analyze
their physical implications in order to decide which is the most natural to
use. We find that if the particle's center of mass world line, namely the one
chosen for the multipole reduction, is a spatially circular orbit (sustained by
the tidal forces due to the spin) then the generalized momentum of the test
particle is also tangent to a spatially circular orbit intersecting the center
of mass line at a point. There exists one such orbit for each point of the
center of mass line where they intersect; although fictitious, these orbits are
essential to define the properties of the spinning particle along its physical
motion. In the small spin limit, the particle's orbit is almost a geodesic and
the difference of its angular velocity with respect to the geodesic value can
be of arbitrary sign, corresponding to the spin-up and spin-down possible
alignment along the z-axis. We also find that the choice of the supplementary
conditions leads to clock effects of substantially different magnitude. In
fact, for co-rotating and counter-rotating particles having the same spin
magnitude and orientation, the gravitomagnetic clock effect induced by the
background metric can be magnified or inhibited and even suppressed by the
contribution of the individual particle's spin. Quite surprisingly this
contribution can be itself made vanishing leading to a clock effect
undistiguishable from that of non spinning particles. The results of our
analysis can be observationally tested.Comment: IOP macros, eps figures n. 12, to appear on Classical and Quantum
Gravity, 200
Kerr metric, static observers and Fermi coordinates
The coordinate transformation which maps the Kerr metric written in standard
Boyer-Lindquist coordinates to its corresponding form adapted to the natural
local coordinates of an observer at rest at a fixed position in the equatorial
plane, i.e., Fermi coordinates for the neighborhood of a static observer world
line, is derived and discussed in a way which extends to any uniformly
circularly orbiting observer there.Comment: 15 page latex iopart class documen
Spinning test particles and clock effect in Schwarzschild spacetime
We study the behaviour of spinning test particles in the Schwarzschild
spacetime. Using Mathisson-Papapetrou equations of motion we confine our
attention to spatially circular orbits and search for observable effects which
could eventually discriminate among the standard supplementary conditions
namely the Corinaldesi-Papapetrou, Pirani and Tulczyjew. We find that if the
world line chosen for the multipole reduction and whose unit tangent we denote
as is a circular orbit then also the generalized momentum of the
spinning test particle is tangent to a circular orbit even though and
are not parallel four-vectors. These orbits are shown to exist because the spin
induced tidal forces provide the required acceleration no matter what
supplementary condition we select. Of course, in the limit of a small spin the
particle's orbit is close of being a circular geodesic and the (small)
deviation of the angular velocities from the geodesic values can be of an
arbitrary sign, corresponding to the possible spin-up and spin-down alignment
to the z-axis. When two spinning particles orbit around a gravitating source in
opposite directions, they make one loop with respect to a given static observer
with different arrival times. This difference is termed clock effect. We find
that a nonzero gravitomagnetic clock effect appears for oppositely orbiting
both spin-up or spin-down particles even in the Schwarzschild spacetime. This
allows us to establish a formal analogy with the case of (spin-less) geodesics
on the equatorial plane of the Kerr spacetime. This result can be verified
experimentally.Comment: IOP macros, eps figures n. 2, to appear on Classical and Quantum
gravity, 200
Inertial forces and the foundations of optical geometry
Assuming a general timelike congruence of worldlines as a reference frame, we
derive a covariant general formalism of inertial forces in General Relativity.
Inspired by the works of Abramowicz et. al. (see e.g. Abramowicz and Lasota,
Class. Quantum Grav. 14 (1997) A23), we also study conformal rescalings of
spacetime and investigate how these affect the inertial force formalism. While
many ways of describing spatial curvature of a trajectory has been discussed in
papers prior to this, one particular prescription (which differs from the
standard projected curvature when the reference is shearing) appears novel. For
the particular case of a hypersurface-forming congruence, using a suitable
rescaling of spacetime, we show that a geodesic photon is always following a
line that is spatially straight with respect to the new curvature measure. This
fact is intimately connected to Fermat's principle, and allows for a certain
generalization of the optical geometry as will be further pursued in a
companion paper (Jonsson and Westman, Class. Quantum Grav. 23 (2006) 61). For
the particular case when the shear-tensor vanishes, we present the inertial
force equation in three-dimensional form (using the bold face vector notation),
and note how similar it is to its Newtonian counterpart. From the spatial
curvature measures that we introduce, we derive corresponding covariant
differentiations of a vector defined along a spacetime trajectory. This allows
us to connect the formalism of this paper to that of Jantzen et. al. (see e.g.
Bini et. al., Int. J. Mod. Phys. D 6 (1997) 143).Comment: 42 pages, 7 figure
Wedging spacetime principal null directions
Taking wedge products of the distinct principal null directions
associated with the eigen-bivectors of the Weyl tensor associated with the
Petrov classification, when linearly independent, one is able to express them
in terms of the eigenvalues governing this decomposition. We study here
algebraic and differential properties of such -forms by completing previous
geometrical results concerning type I spacetimes and extending that analysis to
algebraically special spacetimes with at least 2 distinct principal null
directions. A number of vacuum and nonvacuum spacetimes are examined to
illustrate the general treatment.Comment: 24 pages, no figure
Self-forces from generalized Killing fields
A non-perturbative formalism is developed that simplifies the understanding
of self-forces and self-torques acting on extended scalar charges in curved
spacetimes. Laws of motion are locally derived using momenta generated by a set
of generalized Killing fields. Self-interactions that may be interpreted as
arising from the details of a body's internal structure are shown to have very
simple geometric and physical interpretations. Certain modifications to the
usual definition for a center-of-mass are identified that significantly
simplify the motions of charges with strong self-fields. A derivation is also
provided for a generalized form of the Detweiler-Whiting axiom that pointlike
charges should react only to the so-called regular component of their
self-field. Standard results are shown to be recovered for sufficiently small
charge distributions.Comment: 21 page
Gravitomagnetism in the Kerr-Newman-Taub-NUT spacetime
We study the motion of test particles and electromagnetic waves in the
Kerr-Newman-Taub-NUT spacetime in order to elucidate some of the effects
associated with the gravitomagnetic monopole moment of the source. In
particular, we determine in the linear approximation the contribution of this
monopole to the gravitational time delay and the rotation of the plane of the
polarization of electromagnetic waves. Moreover, we consider "spherical" orbits
of uncharged test particles in the Kerr-Taub-NUT spacetime and discuss the
modification of the Wilkins orbits due to the presence of the gravitomagnetic
monopole.Comment: 12 pages LaTeX iopart style, uses PicTex for 1 Figur
Ultrarelativistic circular orbits of spinning particles in a Schwarzschild field
Ultrarelativistic circular orbits of spinning particles in a Schwarzschild
field described by the Mathisson-Papapetrou equations are considered. The
preliminary estimates of the possible synchrotron electromagnetic radiation of
highly relativistic protons and electrons on these orbits in the gravitational
field of a black hole are presentedComment: 9 page
Generalizing Optical Geometry
We show that by employing the standard projected curvature as a measure of
spatial curvature, we can make a certain generalization of optical geometry
(Abramowicz and Lasota 1997, Class. Quantum Grav. 14 (1997) A23). This
generalization applies to any spacetime that admits a hypersurface orthogonal
shearfree congruence of worldlines. This is a somewhat larger class of
spacetimes than the conformally static spacetimes assumed in standard optical
geometry. In the generalized optical geometry, which in the generic case is
time dependent, photons move with unit speed along spatial geodesics and the
sideways force experienced by a particle following a spatially straight line is
independent of the velocity. Also gyroscopes moving along spatial geodesics do
not precess (relative to the forward direction). Gyroscopes that follow a
curved spatial trajectory precess according to a very simple law of
three-rotation. We also present an inertial force formalism in coordinate
representation for this generalization. Furthermore, we show that by employing
a new sense of spatial curvature (Jonsson, Class. Quantum Grav. 23 (2006) 1)
closely connected to Fermat's principle, we can make a more extensive
generalization of optical geometry that applies to arbitrary spacetimes. In
general this optical geometry will be time dependent, but still geodesic
photons move with unit speed and follow lines that are spatially straight in
the new sense. Also, the sideways experienced (comoving) force on a test
particle following a line that is straight in the new sense will be independent
of the velocity.Comment: 19 pages, 1 figure. A more general analysis is presented than in the
former version. See also the companion papers arXiv:0708.2493,
arXiv:0708.2533 and arXiv:0708.253
Mathisson-Papapetrou-Dixon equations in the Schwarzschild and Kerr backgrounds
A new representation, which does not contain the third-order derivatives of
the coordinates, of the exact Mathisson-Papapetrou-Dixon equations, describing
the motion of a spinning test particle, is obtained under the assumption of the
Mathisson-Pirani condition in a Kerr background. For this purpose the integrals
of energy and angular momentum of the spinning particle as well as a
differential relationship following from the Mathisson-Papapetrou-Dixon
equations are used. The form of these equations is adapted for their computer
integration with the aim to investigate the influence of the spin-curvature
interaction on the particle's behavior in the gravitational field without
restrictions on its velocity and spin orientation. Some numerical examples for
a Schwarzschild background are presented.Comment: 21 pages, 11 figures. arXiv admin note: substantial text overlap with
arXiv:1105.240
- …