63 research outputs found

    Leucine Zipper-Bearing Kinase Is a Critical Regulator of Astrocyte Reactivity in the Adult Mammalian CNS.

    Get PDF
    Reactive astrocytes influence post-injury recovery, repair, and pathogenesis of the mammalian CNS. Much of the regulation of astrocyte reactivity, however, remains to be understood. Using genetic loss and gain-of-function analyses in vivo, we show that the conserved MAP3K13 (also known as leucine zipper-bearing kinase [LZK]) promotes astrocyte reactivity and glial scar formation after CNS injury. Inducible LZK gene deletion in astrocytes of adult mice reduced astrogliosis and impaired glial scar formation, resulting in increased lesion size after spinal cord injury. Conversely, LZK overexpression in astrocytes enhanced astrogliosis and reduced lesion size. Remarkably, in the absence of injury, LZK overexpression alone induced widespread astrogliosis in the CNS and upregulated astrogliosis activators pSTAT3 and SOX9. The identification of LZK as a critical cell-intrinsic regulator of astrocyte reactivity expands our understanding of the multicellular response to CNS injury and disease, with broad translational implications for neural repair

    Transient Demyelination Increases the Efficiency of Retrograde AAV Transduction

    Get PDF
    Adeno-associated virus (AAV) is capable of mediating retrograde viral transduction of central and peripheral neurons. This occurs at a relatively low efficiency, which we previously found to be dependent upon capsid serotype. We sought to augment retrograde transduction by providing increased axonal access to peripherally delivered AAV. Others have described utilizing full transection of peripheral nerves to mediate retrograde viral transduction of motor neurons. Here, we examined the ability of a transient demyelinating event to modulate levels of retrograde AAV transduction. Transient demyelination does not cause lasting functional deficits. Ethidium bromide (EtBr)–induced transient demyelination of the sciatic nerve resulted in significant elevation of retrograde transduction of both motor and sensory neurons. Retrograde transduction levels of motor neurons and heavily myelinated, large-diameter sensory neurons increased at least sixfold following peripheral delivery of self-complementary AAV serotype 1 (scAAV1) and serotype 2 (scAAV2), when preceded by demyelination. These findings identify a means of significantly enhancing retrograde vector transport for use in experimental paradigms requiring either retrograde neuronal identification and gene expression, or translational treatment paradigms

    Axon regeneration after spinal cord injury: insight from genetically modified mouse models

    No full text
    The use of genetically modified mice to study axon regeneration after spinal cord injury has served as a useful in vivo model for both loss-of-function and gain-of-function analysis of candidate proteins. This review discusses the impact of genetically modified mice on axon regeneration after spinal cord injury in the context of axon growth inhibition by myelin, the glial scar, and chemorepellent molecules. We also discuss the use of mice which transgenically express fluorescent proteins in specific axons for increasing our understanding of how spinal cord axons behave after injury

    Role of myelin-associated inhibitors in axonal repair after spinal cord injury

    No full text
    Myelin-associated inhibitors of axon growth, including Nogo, MAG and OMgp, have been the subject of intense research. A myriad of experimental approaches have been applied to investigate the potential of targeting these molecules to promote axonal repair after spinal cord injury. However, there are still conflicting results on their role in axon regeneration and therefore a lack of a cohesive mechanism on how these molecules can be targeted to promote axon repair. One major reason may be the lack of a clear definition of axon regeneration in the first place. Nevertheless, recent data from genetic studies in mice indicate that the roles of these molecules in CNS axon repair may be more intricate than previously envisioned

    Thirteen years of manipulating the mouse genome: A personal history

    No full text
    In 1974, Dr. Ralph Brinster published a paper describing the consequences of injecting embryonal carcinoma cells, the predecessors of embryonic stem cells, into mouse blastocysts. Despite their early promise, embryonal carcinoma cells would not efficiently populate the germ line of mice. A decade later Elizabeth Robertson and I described the efficient generation of germline chimaeras from cultured embryonic stem cells and shortly afterwards the genetic manipulation of the mouse germline using ES cells. Our demonstration of the potency of Embryonic Stem cells gave birth to a new era in manipulative mouse genetics, one in which endogenous genes can now be mutated at will using gene targeting of retroviral mutagenesis. This review focuses on the development and testing of concepts and techniques during the thirteen years after we knew germline modification of endogenous genes in the mouse would be possible. This period is one in which more and more sophisticated tools for manipulating the mouse germline were developed and implemented. In this review I have taken the rare opportunity to reveal some of my thought processes, frustrations, successes and failures as we moved through this exciting period of rapid technological change. As I look forward to the next thirteen years, I feel that this will be an equally exciting period for manipulative genetics as we struggle to formulate concepts and design experiments that enable us to understand gene function in an era when the sequence of all genes will be known.Link_to_subscribed_fulltex

    Understanding the axonal response to injury by in vivo imaging in the mouse spinal cord: A tale of two branches.

    Get PDF
    Understanding the basic properties of how axons respond to injury in the mammalian central nervous system (CNS) is of fundamental value for developing strategies to promote neural repair. Axons possess complex morphologies with stereotypical branching patterns. However, current knowledge of the axonal response to injury gives little consideration to axonal branches, nor do strategies to promote axon regeneration. This article reviews evidence from in vivo spinal cord imaging that axonal branches markedly impact the degenerative and regenerative responses to injury. At a major bifurcation point, depending on whether one or both axonal branches are injured, neurons may choose either a more self-preservative response or a more dynamic response. The stabilizing effect of the spared branch may underlie a well-known divergence in neuronal responses to injury, and illustrates an example where in vivo spinal cord imaging reveals insights that are difficult to elucidate with conventional histological methods
    • …
    corecore