37 research outputs found

    Rapidly Tuning the PID Controller Based on the Regional Surrogate Model Technique in the UAV Formation

    No full text
    The leader–follower structure is widely used in unmanned aerial vehicle formation. This paper adopts the proportional-integral-derivative (PID) and the linear quadratic regulator controllers to construct the leader–follower formation. Tuning the PID controllers is generally empirical; hence, various surrogate models have been introduced to identify more refined parameters with relatively lower cost. However, the construction of surrogate models faces the problem that the singular points may affect the accuracy, such that the global surrogate models may be invalid. Thus, to tune controllers quickly and accurately, the regional surrogate model technique (RSMT), based on analyzing the regional information entropy, is proposed. The proposed RSMT cooperates only with the successful samples to mitigate the effect of singular points along with a classifier screening failed samples. Implementing the RSMT with various kinds of surrogate models, this study evaluates the Pareto fronts of the original simulation model and the RSMT to compare their effectiveness. The results show that the RSMT can accurately reconstruct the simulation model. Compared with the global surrogate models, the RSMT reduces the run time of tuning PID controllers by one order of magnitude, and it improves the accuracy of surrogate models by dozens of orders of magnitude

    Regulation Effects of Water and Nitrogen on the Source-Sink Relationship in Potato during the Tuber Bulking Stage.

    No full text
    The source-sink relationship determines crop yield, and it is largely regulated by water and nutrients in agricultural production. This has been widely investigated in cereals, but fewer studies have been conducted in root and tuber crops such as potato (Solanum tuberosum L.). The objective of this study was to investigate the source-sink relationship in potato and the regulation of water and nitrogen on the source-sink relationship during the tuber bulking stage. A pot experiment using virus-free plantlets of the Atlantic potato cultivar was conducted, using three water levels (50%, 70% and 90% of field capacity) and three nitrogen levels (0, 0.2, 0.4 g N∙kg-1 soil). The results showed that, under all water and nitrogen levels, plant source capacity were small at the end of the experiment, since photosynthetic activity in leaves were low and non-structural reserves in underground stems were completely remobilized. While at this time, there were very big differences in maximum and minimum tuber number and tuber weight, indicating that the sink tuber still had a large potential capacity to take in assimilates. These results suggest that the source-supplied assimilates were not sufficient enough to meet the demands of sink growth. Thus, we concluded that, unlike cereals, potato yield is more likely to be source-limited than sink-limited during the tuber bulking stage. Water and nitrogen are two key factors in potato production management. Our results showed that water level, nitrogen level and the interaction between water and nitrogen influence potato yield mainly through affecting source capacity via the net photosynthetic rate, total leaf area and leaf life span. Well-watered, sufficient nitrogen and well-watered combined with sufficient nitrogen increased yield mainly by enhancing the source capacity. Therefore, this suggests that increasing source capacity is more crucial to improve potato yield

    Carbon/Nitrogen Imbalance Associated with Drought-Induced Leaf Senescence in <i>Sorghum bicolor</i>

    No full text
    <div><p>Drought stress triggers mature leaf senescence, which supports plant survival and remobilization of nutrients; yet leaf senescence also critically decreases post-drought crop yield. Drought generally results in carbon/nitrogen imbalance, which is reflected in the increased carbon:nitrogen (C:N) ratio in mature leaves, and which has been shown to be involved in inducing leaf senescence under normal growth conditions. Yet the involvement of the carbon/nitrogen balance in regulation of drought-induced leaf senescence is unclear. To investigate the role of carbon/nitrogen balance in drought-induced senescence, sorghum seedlings were subjected to a gradual soil drought treatment. Leaf senescence symptoms and the C:N ratio, which was indicated by the ratio of non-structural carbohydrate to total N content, were monitored during drought progression. In this study, leaf senescence developed about 12 days after the start of drought treatment, as indicated by various senescence symptoms including decreasing photosynthesis, photosystem II photochemistry efficiency (Fv/Fm) and chlorophyll content, and by the differential expression of senescence marker genes. The C:N ratio was significantly enhanced 10 to 12 days into drought treatment. Leaf senescence occurred in the older (lower) leaves, which had higher C:N ratios, but not in the younger (upper) leaves, which had lower C:N ratios. In addition, a detached leaf assay was conducted to investigate the effect of carbon/nitrogen availability on drought-induced senescence. Exogenous application of excess sugar combined with limited nitrogen promoted drought-induced leaf senescence. Thus our results suggest that the carbon/nitrogen balance may be involved in the regulation of drought-induced leaf senescence.</p></div

    Senescence symptoms and C/N balance in leaves at different positions in the sorghum plant after drought.

    No full text
    <p>A, Maximum efficiency of PSII photochemistry (Fv/Fm). B, Chlorophyll content. C, Soluble sugars. D, Starch. E, Total non-structural sugars. F, Total nitrogen content. G, C:N ratio. Data represent the mean ± SE (n = 3). Asterisks indicate statistically significant differences between treatments (* <i>P</i>≤0.05; ** <i>P</i>≤0.01; *** <i>P</i>≤0.001).</p

    Changes in leaf water potential (A) and relative water content (RWC, B) in sorghum leaf 8 during drought progression.

    No full text
    <p>Data represent the mean ± SD (n = 5). Asterisks indicate statistically significant differences between treatments (* <i>P</i>≤0.05; ** <i>P</i>≤0.01; *** <i>P</i>≤0.001).</p
    corecore