49 research outputs found
Control of astrocyte progenitor specification, migration and maturation by Nkx6.1 homeodomain transcription factor.
Although astrocytes are the most abundant cell type in the central nervous system (CNS), little is known about their molecular specification and differentiation. It has previously been reported that transcription factor Nkx6.1 is expressed in neuroepithelial cells that give rise to astrocyte precursors in the ventral spinal cord. In the present study, we systematically investigated the function of Nkx6.1 in astrocyte development using both conventional and conditional Nkx6.1 mutant mice. At early postnatal stages, Nkx6.1 was expressed in a subpopulation of astrocytes in the ventral spinal cord. In the conventional Nkx6.1KO spinal cord, the initial specification of astrocyte progenitors was affected by the mutation, and subsequent migration and differentiation were disrupted in newborn mice. In addition, the development of VA2 subtype astrocytes was also inhibited in the white matter. Further studies with Nkx6.1 conditional mutants revealed significantly delayed differentiation and disorganized arrangement of fibrous astrocytes in the ventral white matter. Together, our studies indicate that Nkx6.1 plays a vital role in astrocyte specification and differentiation in the ventral spinal cord
Severe Pneumonia Caused by Coinfection With Influenza Virus Followed by Methicillin-Resistant Staphylococcus aureus Induces Higher Mortality in Mice
Background: Coinfection with influenza virus and bacteria is a major cause of high mortality during flu pandemics. Understanding the mechanisms behind such coinfections is of utmost importance both for the clinical treatment of influenza and the prevention and control of epidemics.Methods: To investigate the cause of high mortality during flu pandemics, we performed coinfection experiments with H1N1 influenza virus and Staphylococcus aureus in which mice were infected with bacteria at time points ranging from 0 to 7 days after infection with influenza virus.Results: The mortality rates of mice infected with bacteria were highest 0–3 days after infection with influenza virus; lung tissues extracted from these co-infected mice showed higher infiltrating cells and thicker lung parenchyma than lung samples from coinfected mice in which influenza virus was introduced at other times and sequences. The levels of interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-8, and IL-6 in the 0–3 day coinfected group were significantly higher than those in the other groups (p < 0.01), as were the mRNA levels of IFN-γ, IL-6, and TNF-α. Coinfection with influenza virus and S. aureus led to high mortality rates that are directly dependent on the sequence and timing of infection by both pathogens. Moreover, coinfection following this particular schedule induced severe pneumonia, leading to increased mortality.Conclusions: Our data suggest that prevention of bacterial co-infection in the early stage of influenza virus infection is critical to reducing the risk of clinical mortality
Research on the Vanishing Point Detection Method Based on an Improved Lightweight AlexNet Network for Narrow Waterway Scenarios
When an unmanned surface vehicle (USV) navigates in narrow waterway scenarios, its ability to detect vanishing points accurately and quickly is highly important for safeguarding its navigation safety and realizing automated navigation. We propose a novel approach for detecting vanishing points based on an improved lightweight AlexNet. First, a similarity evaluation calculation method based on image texture features is proposed, by which some scenarios are selected from the filtered Google Street Road Dataset (GSRD). These filtered scenarios, together with the USV Inland Dataset (USVID), compose the training dataset, which is manually labeled according to a non-uniformly distributed grid level. Next, the classical AlexNet was adjusted and optimized by constructing sequential connections of four convolutional layers and four pooling layers and incorporating the Inception A and Inception C structures in the first two convolutional layers. During model training, we formulate vanishing point detection as a classification problem using an output layer with 225 discrete possible vanishing point locations. Finally, we compare and analyze the labeled vanishing point with the detected vanishing point. The experimental results show that the accuracy of our method and the state-of-the-art algorithmic vanishing point detector improves, indicating that our improved lightweight AlexNet can be applied in narrow waterway navigation scenarios and can provide a technical reference for autonomous navigation of USVs
Application of Synthetic NDVI Time Series Blended from Landsat and MODIS Data for Grassland Biomass Estimation
Accurate monitoring of grassland biomass at high spatial and temporal resolutions is important for the effective utilization of grasslands in ecological and agricultural applications. However, current remote sensing data cannot simultaneously provide accurate monitoring of vegetation changes with fine temporal and spatial resolutions. We used a data-fusion approach, namely the spatial and temporal adaptive reflectance fusion model (STARFM), to generate synthetic normalized difference vegetation index (NDVI) data from Moderate-Resolution Imaging Spectroradiometer (MODIS) and Landsat data sets. This provided observations at fine temporal (8-d) and medium spatial (30 m) resolutions. Based on field-sampled aboveground biomass (AGB), synthetic NDVI and support vector machine (SVM) techniques were integrated to develop an AGB estimation model (SVM-AGB) for Xilinhot in Inner Mongolia, China. Compared with model generated from MODIS-NDVI (R2 = 0.73, root-mean-square error (RMSE) = 30.61 g/m2), the SVM-AGB model we developed can not only ensure the accuracy of estimation (R2 = 0.77, RMSE = 17.22 g/m2), but also produce higher spatial (30 m) and temporal resolution (8-d) biomass maps. We then generated the time-series biomass to detect biomass anomalies for grassland regions. We found that the synthetic NDVI-derived estimations contained more details on the distribution and severity of vegetation anomalies compared with MODIS NDVI-derived AGB estimations. This is the first time that we have generated time series of grassland biomass with 30-m and 8-d intervals data through combined use of a data-fusion method and the SVM-AGB model. Our study will be useful for near real-time and accurate (improved resolutions) monitoring of grassland conditions, and the data have implications for arid and semi-arid grasslands management
T4 DNA polymerase improves the efficiency of multiple site-directed mutagenesis
Site-directed mutagenesis (SDM) is a useful tool to study the functions of regulatory sequences of DNA and RNA, and the structures and functions of proteins. Numerous methods have been developed for either single or multiple SDM (MSDM). However, MSDM is sometimes difficult. Here we demonstrated that T4 DNA polymerase greatly enhanced the efficiency of MSDM. Moreover, we have also showed that it is efficient to clone multiple specific mutation-containing sequences simultaneously
MORF9 Functions in Plastid RNA Editing with Tissue Specificity
RNA editing in plant mitochondria and plastids converts specific nucleotides from cytidine (C) to uridine (U). These editing events differ among plant species and are relevant to developmental stages or are impacted by environmental conditions. Proteins of the MORF family are essential components of plant editosomes. One of the members, MORF9, is considered the core protein of the editing complex and is involved in the editing of most sites in chloroplasts. In this study, the phenotypes of a T-DNA insertion line with loss of MORF9 and of the genetic complementation line of Arabidopsis were analyzed, and the editing efficiencies of plastid RNAs in roots, rosette leaves, and flowers from the morf9 mutant and the wild-type (WT) control were compared by bulk-cDNA sequencing. The results showed that most of the known MORF9-associated plastid RNA editing events in rosette leaves and flowers were similarly reduced by morf9 mutation, with the exception that the editing rate of the sites ndhB-872 and psbF-65 declined in the leaves and that of ndhB-586 decreased only in the flowers. In the roots, however, the loss of MORF9 had a much lower effect on overall plastid RNA editing, with nine sites showing no significant editing efficiency change, including accD-794, ndhD-383, psbZ-50, ndhF-290, ndhD-878, matK-706, clpP1-559, rpoA-200, and ndhD-674, which were reduced in the other tissues. Furthermore, we found that during plant aging, MORF9 mRNA level, but not the protein level, was downregulated in senescent leaves. On the basis of these observations, we suggest that MORF9-mediated RNA editing is tissue-dependent and the resultant organelle proteomes are pertinent to the specific tissue functions
Pulsed laser linewidth measurement using Fabry–Pérot scanning interferometer
We apply the Fabry–Pérot (FP) scanning interferometer, which is normally used for continuous wave (CW) laser linewidth measurement, for the measurement of pulsed laser linewidths. We analyze the response of the FP interferometer to continuous and pulsed lasers, also different detectors and suitable oscilloscope test parameters being selected for the measurement. For low-speed detectors, we set our oscilloscope to 1-MΩ impedance matching in the sampling mode. For high-speed detectors, we use the same oscilloscope test parameters or 50-Ω impedance matching with the peak-detection mode. With our setup, we achieve on-line linewidth measurement of a nanosecond pulsed laser for single-longitudinal and multi-longitudinal modes. Meanwhile, the linewidth measurement at different pulse repetition rates as low as 1 Hz is also demonstrated. The possibility of detecting the linewidth for pulse widths larger than 100 ps in the 1-μm band is discussed. The application range of the FP scanning interferometer is thus extended to the measurement of pulsed laser linewidths. Keywords: Pulsed laser, Linewidth, Fabry–Pérot interferomete
HDAC2- and EZH2-Mediated Histone Modifications Induce PDK1 Expression through miR-148a Downregulation in Breast Cancer Progression and Adriamycin Resistance
Background: Breast cancer has one of highest morbidity and mortality rates for women. Abnormalities regarding epigenetics modification and pyruvate dehydrogenase kinase 1 (PDK1)-induced unusual metabolism contribute to breast cancer progression and chemotherapy resistance. However, the role and mechanism of epigenetic change in regulating PDK1 in breast cancer remains to be elucidated. Methods: Gene set enrichment analysis (GSEA) and Pearson’s correlation analysis were performed to analyze the relationship between histone deacetylase 2 (HDAC2), enhancer of zeste homologue 2 (EZH2), and PDK1 in database and human breast cancer tissues. Dual luciferase reporters were used to test the regulation between PDK1 and miR-148a. HDAC2 and EZH2 were found to regulate miR-148a expression through Western blotting assays, qRT-PCR and co-immunoprecipitation assays. The effects of PDK1 and miR-148a in breast cancer were investigated by immunofluorescence (IF) assay, Transwell assay and flow cytometry assay. The roles of miR-148a/PDK1 in tumor growth were investigated in vivo. Results: We found that PDK1 expression was upregulated by epigenetic alterations mediated by HDAC2 and EZH2. At the post-transcriptional level, PDK1 was a new direct target of miR-148a and was upregulated in breast cancer cells due to miR-148a suppression. PDK1 overexpression partly reversed the biological function of miR-148a—including miR-148a’s ability to increase cell sensitivity to Adriamycin (ADR) treatment—inhibiting cell glycolysis, invasion and epithelial–mesenchymal transition (EMT), and inducing apoptosis and repressing tumor growth. Furthermore, we identified a novel mechanism: DNMT1 directly bound to EZH2 and recruited EZH2 and HDAC2 complexes to the promoter region of miR-148a, leading to miR-148a downregulation. In breast cancer tissues, HDAC2 and EZH2 protein expression levels also were inversely correlated with levels of miR-148a expression. Conclusion: Our study found a new regulatory mechanism in which EZH2 and HDAC2 mediate PDK1 upregulation by silencing miR-148a expression to regulate cancer development and Adriamycin resistance. These new findings suggest that the HDAC2/EZH2/miR-148a/PDK1 axis is a novel mechanism for regulating cancer development and is a potentially promising target for therapeutic options in the future
Vegetation Changes and Their Response to Global Change Based on NDVI in the Koshi River Basin of Central Himalayas Since 2000
Vegetation forms a main component of the terrestrial biosphere owing to its crucial role in land cover and climate change, which has been of wide concern for experts and scholars. In this study, we used MODIS (moderate-resolution imaging spectroradiometer) NDVI (Normalized Difference Vegetation Index) data, land cover data, meteorological data, and DEM (Digital Elevation Model) data to do vegetation change and its relationship with climate change. First, we investigated the spatio-temporal patterns and variations of vegetation activity in the Koshi River Basin (KRB) in the central Himalayas from 2000 to 2018. Then, we combined NDVI change with climate factors using the linear method to examine their relationship, after that we used the literature review method to explore the influence of human activities to vegetation change. At the regional scale, the NDVIGS (Growth season NDVI) significantly increased in the KRB in 2000–2018, with significant greening over croplands in KRB in India. Further, the croplands and forest in the KRB in Nepal were mainly influenced by human interference. For example, improvements in agricultural fertilization and irrigation facilities as well as the success of the community forestry program in the KRB in Nepal increased the NDVIGS of the local forest. Climate also had a certain impact on the increase in NDVIGS. A significant negative correlation was observed between NDVIGS trend and the annual minimum temperature trend (TMN) in the KRB in India, but an insignificant positive correlation was noted between it and the total annual precipitation trend (PRE). NDVIGS significantly decreased over a small area, mainly around Kathmandu, due to urbanization. Increases in NDVIGS in the KRB have thus been mainly affected by human activities, and climate change has helped increase it to a certain extent
Epidemiological and clinical characteristics of a family cluster of psittacosis: A case report
Psittacosis accounts for 1–2 % of community-acquired pneumonia. In recent years, reports of psittacosis are increasing. Most reported cases of psittacosis are sporadic. Here, we report a familial cluster of five patients infected with Chlamydophila in a northwest Chinese region and share our diagnosis and treatment experience. The epidemiological characteristics, clinical features, laboratory examinations of family cluster psittacosis were collected and analyzed. We closely followed up all the family members and analyzed their clinical outcome. Five cases of family clustered pneumonia were mainly characterized by fever, cough and fatigue. mNGS rapidly identified the infecting agent as Chlamydophila in case 1 followed by RT-PCR analysis. A newly purchased pet parrot, which had diarrhea, was probably the primary source of infection. The main change of inflammation index in five patients was the decrease of lymphocyte counts. Chest CT showed peripheral or subpleural involvement of patchy high-density shadows with bronchial ventilation signs and blurred edges, mostly unilateral lesions. Five cases were completely cured with moxifloxacin and azithromycin. Our findings suggest that a familial cluster of Chlamydophila infection maybe caused by contact with sick pet parrot or human to human transmission in one close family. For this community-acquired pneumonia, epidemiological characteristics and use of mNGS is very important for improving accuracy in the early diagnosis