3,558 research outputs found

    Zebra battery technologies for all electric smart car

    Get PDF
    This paper describes the operational behaviour and advantages of the high temperature, sodium nickel chloride (Zebra) battery, for use in all electric urban (city) vehicles. It is shown that an equivalent parallel electrical circuit can be employed to accurately simulate the electrochemical behaviour inherent in the most recent generation of Zebra cells. The experimental procedure is outlined and summary attributes of the investigation validated by both simulation studies, and experimentally, via measurements from a prototype battery module intended for use in an all electric smart ca

    Research notes: Cytology of soybean haploid progeny

    Get PDF
    Haploids are being isolated annually among individuals obtained from polyembryonic seeds associated with the North Carolina male sterile (ms1). The haploids are being used to obtain aneuploids. In 1976 and 1977, 7,206 and 15,530 seeds, respectively, were obtained from male sterile plants (ms1 North Carolina) representing Maturity Groups I- V

    Research Notes: Histology of the Embryo Sac of Male Sterile ms1ms1 Soybeans

    Get PDF
    The fact that ms1ms1 plants in maturity ranges I to V were producing haploids, triploids, and even higher ploidy levels along with the predominant normal diploids, indicated the female gametophyte was at least occasionally functioning abnormally. Histological sections of 92 male sterile pistils from plants about Groups III and IV, indicated only about 28% of the ovules had a normal embryo sac, by our interpretation. The remainder most commonly had extra nuclei in the regions of the secondary nucleus (endosperm mother cell) and/or the egg apparatus

    Research Notes: Progress in Obtaining Soybean Haploids 2n=20

    Get PDF
    Male sterility gene ms 1 from North Carolina was transferred to maturity groups I, II, and III over the last few years to facilitate the use in Wisconsin of the twinning and haploidy phenomena associated with ms1ms1 plants. In 1975 we had an extended fall growing season and seed was obtained from several hundred male sterile ms 1ms1 plants, representing maturity groups I, II, III, IV, and V. Honey bees were used as pollinators

    Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering

    Get PDF
    Twisted Laguerre-Gaussian lasers, with orbital angular momentum and characterised by doughnut shaped intensity profiles, provide a transformative set of tools and research directions in a growing range of fields and applications, from super-resolution microcopy and ultra-fast optical communications to quantum computing and astrophysics. The impact of twisted light is widening as recent numerical calculations provided solutions to long-standing challenges in plasma-based acceleration by allowing for high gradient positron acceleration. The production of ultrahigh intensity twisted laser pulses could then also have a broad influence on relativistic laser-matter interactions. Here we show theoretically and with ab-initio three-dimensional particle-in-cell simulations, that stimulated Raman backscattering can generate and amplify twisted lasers to Petawatt intensities in plasmas. This work may open new research directions in non-linear optics and high energy density science, compact plasma based accelerators and light sources.Comment: 18 pages, 4 figures, 1 tabl

    Research Notes: University of Wisconsin

    Get PDF
    Tissue culture methods may benefit soybean breeders if whole plants can be differentiated from aneuploid, mutated, fused, or haploid cells. However, in order to realize this potential, it must be possible to derive plantlets from previously undifferentiated tissues - and ultimately from masses of callus cells. This report summarizes the information we obtained concerning adventitious budding from soybean tissues (Kimball and Bingham, 1973), early stages of embryo formation within masses of callus cells, and actual differentiation of plantlets from callus tissue

    Using Flow Specifications of Parameterized Cache Coherence Protocols for Verifying Deadlock Freedom

    Full text link
    We consider the problem of verifying deadlock freedom for symmetric cache coherence protocols. In particular, we focus on a specific form of deadlock which is useful for the cache coherence protocol domain and consistent with the internal definition of deadlock in the Murphi model checker: we refer to this deadlock as a system- wide deadlock (s-deadlock). In s-deadlock, the entire system gets blocked and is unable to make any transition. Cache coherence protocols consist of N symmetric cache agents, where N is an unbounded parameter; thus the verification of s-deadlock freedom is naturally a parameterized verification problem. Parametrized verification techniques work by using sound abstractions to reduce the unbounded model to a bounded model. Efficient abstractions which work well for industrial scale protocols typically bound the model by replacing the state of most of the agents by an abstract environment, while keeping just one or two agents as is. However, leveraging such efficient abstractions becomes a challenge for s-deadlock: a violation of s-deadlock is a state in which the transitions of all of the unbounded number of agents cannot occur and so a simple abstraction like the one above will not preserve this violation. In this work we address this challenge by presenting a technique which leverages high-level information about the protocols, in the form of message sequence dia- grams referred to as flows, for constructing invariants that are collectively stronger than s-deadlock. Efficient abstractions can be constructed to verify these invariants. We successfully verify the German and Flash protocols using our technique

    The origin of the red luminescence in Mg-doped GaN

    Full text link
    Optically-detected magnetic resonance (ODMR) and positron annihilation spectroscopy (PAS) experiments have been employed to study magnesium-doped GaN layers grown by metal-organic vapor phase epitaxy. As the Mg doping level is changed, the combined experiments reveal a strong correlation between the vacancy concentrations and the intensity of the red photoluminescence band at 1.8 eV. The analysis provides strong evidence that the emission is due to recombination in which electrons both from effective mass donors and from deeper donors recombine with deep centers, the deep centers being vacancy-related defects.Comment: 4 pages, 3 figure
    • …
    corecore