187 research outputs found

    Topological Materials: Weyl Semimetals

    Full text link
    Topological insulators and topological semimetals are both new classes of quantum materials, which are characterized by surface states induced by the topology of the bulk band structure. Topological Dirac or Weyl semimetals show linear dispersion round nodes, termed the Dirac or Weyl points, as the three-dimensional analogue of graphene. We review the basic concepts and compare these topological states of matter from the materials perspective with a special focus on Weyl semimetals. The TaAs family is the ideal materials class to introduce the signatures of Weyl points in a pedagogical way, from Fermi arcs to the chiral magneto-transport properties, followed by the hunting for the type-II Weyl semimetals in WTe2, MoTe2 and related compounds. Many materials are members of big families and topological properties can be tuned. As one example, we introduce the multifuntional topological materials, Heusler compounds, in which both topological insulators and magnetic Weyl semimetals can be found. Instead of a comprehensive review, this article is expected to serve as a helpful introduction and summary by taking a snapshot of the quickly expanding field.Comment: 19 pages, 7 figures, an invited review article for Annual Review of Condensed Matter Physic

    The Berry curvature dipole in Weyl semimetal materials: an ab initio study

    Full text link
    Noncentrosymmetric metals are anticipated to exhibit a dcdc photocurrent in the nonlinear optical response caused by the Berry curvature dipole in momentum space. Weyl semimetals (WSMs) are expected to be excellent candidates for observing these nonlinear effects because they carry a large Berry curvature concentrated in small regions, i.e., near the Weyl points. We have implemented the semiclassical Berry curvature dipole formalism into an ab initioab~initio scheme and investigated the second-order nonlinear response for two representative groups of materials: the TaAs-family type-I WSMs and MoTe2_2-family type-II WSMs. Both types of WSMs exhibited a Berry curvature dipole, in which type-II Weyl points are usually superior to the type-I because of the strong tilt. Corresponding nonlinear susceptibilities in several materials promise a nonlinear Hall effect in the dcdc field limit, which is within the experimentally detectable range.Comment: 6 pages, 4 figures and 1 tabl

    Topological surface states and Fermi arcs of the noncentrosymmetric Weyl semimetals TaAs, TaP, NbAs, and NbP

    Full text link
    Very recently the topological Weyl semimetal (WSM) state was predicted in the noncentrosymmetric compounds TaAs, TaP, NbAs, and NbP and soon led to photoemission and transport experiments to verify the presumed topological properties such as Fermi arcs (unclosed Fermi surfaces) and the chiral anomaly. In this work, we have performed fully \textit{ab initio} calculations of the surface band structures of these four WSM materials and revealed the Fermi arcs with spin-momentum-locked spin texture. On the (001) polar surface, the shape of the Fermi surface depends sensitively on the surface terminations (cations or anions), although they exhibit the same topology with arcs. The anion (P or As) terminated surfaces are found to fit recent photoemission measurements well. Such surface potential dependence indicates that the shape of the Fermi surface can be manipulated by depositing guest species (such as K atoms), as we demonstrate. On the polar surface of a WSM without inversion symmetry, Rashba-type spin polarization naturally exists in the surface states and leads to strong spin texture. By tracing the spin polarization of the Fermi surface, we can also distinguish Fermi arcs from trivial Fermi circles. The four compounds NbP, NbAs, TaP, and TaAs present an increasing amplitude of spin-orbit coupling (SOC) in the band structure. By comparing their surface states, we reveal the evolution of topological Fermi arcs from the spin-degenerate Fermi circle to spin-split arcs when the SOC increases from zero to a finite value. Our work will help us understand the complicated surface states of WSMs and allow us to manipulate them, especially for future spin-revolved photoemission and transport experiments.Comment: This manuscript has been submitted to Physical Review B on 22 Jul. 201

    Hidden type-II Weyl points in the Weyl semimetal NbP

    Full text link
    As one of Weyl semimetals discovered recently, NbP exhibits two groups of Weyl points with one group lying inside the kz=0k_z=0 plane and the other group staying away from this plane. All Weyl points have been assumed to be type-I, for which the Fermi surface shrinks into a point as the Fermi energy crosses the Weyl point. In this work, we have revealed that the second group of Weyl points are actually type-II, which are found to be touching points between the electron and hole pockets in the Fermi surface. Corresponding Weyl cones are strongly tilted along a line approximately 17∘17^\circ off the kzk_z axis in the kx−kzk_x - k_z (or ky−kzk_y - k_z) plane, violating the Lorentz symmetry but still giving rise to Fermi arcs on the surface. Therefore, NbP exhibits both type-I (kz=0k_z=0 plane) and type-II (kz≠0k_z \neq 0 plane) Weyl points.Comment: 5 pages and 4 figure

    Ab initio study of topological surface states of strained HgTe

    Full text link
    The topological surface states of mercury telluride (HgTe) are studied by ab initio calculations assuming different strains and surface terminations. For the Te-terminated surface, a single Dirac cone exists at the Γ\Gamma point. The Dirac point shifts up from the bulk valence bands into the energy gap when the substrate-induced strain increases. At the experimental strain value (0.3%), the Dirac point lies slightly below the bulk valence band maximum. A left-handed spin texture was observed in the upper Dirac cone, similar to that of the Bi2_2Se3_3-type topological insulator. For the Hg-terminated surface, three Dirac cones appear at three time-reversal-invariant momenta, excluding the Γ\Gamma point, with nontrivial spin textures.Comment: 4 pages, 3 figure

    Distinct magnetic gaps between antiferromagnetic and ferromagnetic orders driven by surface defects in the topological magnet MnBi2Te4

    Full text link
    The magnetic topological insulator, MnBi2_2Te4_4, shows metallic behavior at zero magnetic fields (antiferromagnetic phase, AFM) in thin film transport, which coincides with gapless surface states observed by angle-resolved photoemission spectroscopy, while it can become a Chern insulator at field larger than 6 T (ferromagnetic phase, FM). Thus, the zero-field surface magnetism was once speculated to be different from the bulk AFM phase. However, recent magnetic force microscopy refutes this assumption by detecting persistent AFM order on the surface. In this work, we propose a mechanism related to surface defects that can rationalize these contradicting observations in different experiments. We find that co-antisites (exchanging Mn and Bi atoms in the surface van der Waals layer) can strongly suppress the magnetic gap down to several meV in the AFM phase without violating the magnetic order but preserve the magnetic gap in the FM phase. The different gap sizes between AFM and FM phases are caused by the defect-induced surface charge redistribution among top two van der Waals layers. This theory can be validated by the position- and field-dependent gap in future surface spectroscopy measurements. Our work suggests suppressing related defects in samples to realize the quantum anomalous Hall insulator or axion insulator at zero fields.Comment: 5 pages, 4 figures+1 table. Supplemental material is availabl

    Topological superconductivity at the edge of transition metal dichalcogenides

    Full text link
    Time-reversal breaking topological superconductors are new states of matter which can support Majorana zero modes at the edge. In this paper, we propose a new realization of one-dimensional topological superconductivity and Majorana zero modes. The proposed system consists of a monolayer of transition metal dichalcogenides MX2 (M=Mo, W; X=S, Se) on top of a superconducting substrate. Based on first-principles calculations, we show that a zigzag edge of the monolayer MX2 terminated by metal atom M has edge states with strong spin-orbit coupling and spontaneous magnetization. By proximity coupling with a superconducting substrate, topological superconductivity can be induced at such an edge. We propose NbS2 as a natural choice of substrate, and estimate the proximity induced superconducting gap based on first-principles calculation and low energy effective model. As an experimental consequence of our theory, we predict that Majorana zero modes can be detected at the 120 degree corner of a MX2 flake in proximity with a superconducting substrate
    • …
    corecore