113 research outputs found

    Anomalous Circularly Polarized Light Emission induced by the Optical Berry Curvature Dipole

    Full text link
    The ability to selectively excite light with fixed handedness is crucial for circularly polarized light emission. It is commonly believed that the luminescent material chirality determines the emitted light handedness, regardless of the light emitting direction. In this work, we propose an anomalous circular polarized light emission (ACPLE) whose handedness actually relies on the emission direction and current direction in electroluminescence. In a solid semiconductor, the ACPLE originates in the band structure topology characterized by the optical Berry curvature dipole. ACPLE exists in inversion-symmetry breaking materials including chiral materials. We exemplify the ACPLE by estimating the high circular polarization ratio in monolayer WS2_2. In addition, the ACPLE can be further generalized to magnetic semiconductors in which the optical Berry curvature plays a leading role instead. Our finding reveals intriguing consequences of band topology in light emission and promises optoelectric applications.Comment: 7 pages, 4 figure

    Synthesis and characterization of cobalt ferrite powdered materials

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Chirality driven topological electronic structure of DNA-like materials

    Full text link
    Topological aspects of the geometry of DNA and similar chiral molecules have received a lot of attention, while the topology of their electronic structure is less explored. Previous experiments have revealed that DNA can efficiently filter spin-polarized electrons between metal contacts, a process called chiral-induced spin-selectivity (CISS). However, the underlying correlation between chiral structure and electronic spin remains elusive. In this work, we reveal an orbital texture in the band structure, a topological characteristic induced by the chirality. We find that this orbital texture enables the chiral molecule to polarize the quantum orbital. This orbital polarization effect (OPE) induces spin polarization assisted by the spin-orbit interaction from a metal contact and leads to magnetorestistance and chiral separation. The orbital angular momentum of photoelectrons also plays an essential role in related photoemission experiments. Beyond CISS, we predict that OPE can induce spin-selective phenomena even in achiral but inversion-breaking materials.Comment: 24 pages, 4 figures, and Supplementary Material

    Prediction of triple point fermions in simple half-Heusler topological insulators

    Full text link
    We predict the existence of triple point fermions in the band structure of several half-Heusler topological insulators by ab initioab~initio calculations and the Kane model. We find that many half-Heusler compounds exhibit multiple triple points along four independent C3C_3 axes, through which the doubly degenerate conduction bands and the nondegenerate valence band cross each other linearly nearby the Fermi energy. When projected from the bulk to the (111) surface, most of these triple points are located far away from the surface Γˉ\bar{\Gamma} point, as distinct from previously reported triple point fermion candidates. These isolated triple points give rise to Fermi arcs on the surface, that can be readily detected by photoemission spectroscopy or scanning tunneling spectroscopy.Comment: 6 pages, 3 figures. The supplementary information is attached in the latex packag
    corecore