44 research outputs found

    Apply blockchain technology to electric vehicle battery refueling

    Get PDF
    Battery swapping is a solution of electric vehicle (EV) battery refueling. For EV owners, the battery information and transaction’s correctness, openness, traceability and immutability is difficult to get guarantee in traditional centralized system. The trust lacking between EV owners and swapping station is caused, and becomes a big challenge to EV’s rapid development. An objective mechanism based on decentralized blockchain system is proposed to manage battery swapping and solve the trust lacking issue. With this solution, both battery’s life-cycle information and all operations histories are permanently saved in blockchain network. All key logics are driven by smart contracts, the battery price calculation and the digital currency exchange between EV owners and station are realized by smart contracts automatically and accurately. A primary prototype based on Ethereum is analyzed and implemented to illustrate the feasibility of managing battery swapping and refueling based on blockchain system to solve the trust lacking issue

    Bottom and Concave Surface Rendering in Image-based Visual Hull

    No full text
    International audienceBottom and concave shapes on object surface are difficult to reconstruct in image-based visual hull method. In this paper, we propose a simple but efficient method to solve these problems in regular image-based visual hull framework. With the help of a simple image acquiring platform which involves a glass and a mirror, we can capture images of the object from both upper and lower side at the same time. Using these images, silhouette cones necessary for reconstructing the bottom and the concave surfaces could be generated. Therefore the final rendering result of the object can be significantly improved in accuracy and reality, especially in the parts of bottom and concaves

    A new transit assignment model based on line and node strategies

    No full text
    Passengers traveling on transit networks involve two kinds of decision-making strategies: deciding which lines are attractive at an origin or transfer node (denoted line strategy, LS), or deciding which node to transfer at when riding a line (denoted node strategy, NS). Combining these two strategies, this paper proposes a novel variational inequality formulation for the user equilibrium passenger assignment problem. The inclusion of the NS eliminates the need for passenger assignment on a large augmented graph, reducing the modeling complexity and making it easier to track all passengers’ travel routes. Moreover, constraints on the maximal number of transfers—which are crucial in practical decision-making on transit networks—are explicitly included, further drastically reducing the set of passengers’ feasible strategies. Furthermore, some extant strategy-based transit assignment models are shown to be a special case of the proposed model when the transfer constraint is removed. Finally, the properties of the proposed model are illustrated on a small network, and the model and algorithm exhibit huge advantages on the chosen transit subnetwork of Beijing

    Query recommendation and its usefulness evaluation on mobile search engine

    No full text
    corecore