40 research outputs found

    One-Pot Synthesis of Biocompatible CdSe/CdS Quantum Dots and Their Applications as Fluorescent Biological Labels

    Get PDF
    We developed a novel one-pot polyol approach for the synthesis of biocompatible CdSe quantum dots (QDs) using poly(acrylic acid) (PAA) as a capping ligand at 240°C. The morphological and structural characterization confirmed the formation of biocompatible and monodisperse CdSe QDs with several nanometers in size. The encapsulation of CdS thin layers on the surface of CdSe QDs (CdSe/CdS core–shell QDs) was used for passivating the defect emission (650 nm) and enhancing the fluorescent quantum yields up to 30% of band-to-band emission (530–600 nm). Moreover, the PL emission peak of CdSe/CdS core–shell QDs could be tuned from 530 to 600 nm by the size of CdSe core. The as-prepared CdSe/CdS core–shell QDs with small size, well water solubility, good monodispersity, and bright PL emission showed high performance as fluorescent cell labels in vitro. The viability of QDs-labeled 293T cells was evaluated using a 3-(4,5-dimethylthiazol)-2-diphenyltertrazolium bromide (MTT) assay. The results showed the satisfactory (>80%) biocompatibility of as-synthesized PAA-capped QDs at the Cd concentration of 15 μg/ml

    Graphene Quantum Dots and Enzyme-Coupled Biosensor for Highly Sensitive Determination of Hydrogen Peroxide and Glucose

    No full text
    In this paper, a simple and specific graphene quantum dots (GQDs)-based fluorescent biosensor adopted for the determination of glucose based on the combination of the enzyme-coupled method and fluorescence quenching mechanism is demonstrated. Glucose was oxidized by the enzyme glucose oxidase (GOx), forming hydrogen peroxide (H 2 O 2 ) via the catalysis by horseradish peroxidase (HRP). H 2 O 2 was then employed to oxidize phenol to quinone, which led to effective quenching effect in the GQDs–GOx–HRP–phenol system. By optimizing the reaction conditions of the GQDs-enzyme system, a linear relationship between the concentration of glucose and the fluorescence intensity over a range of 0.2–10 μ mol/L was obtained. The limit of detection for glucose is 0.08 μ mol/L. The present biosensor for the determination of glucose showed satisfactory reproducibility and accuracy in human serum samples. Since the enzymes have high specificity and unique affinity to the certain substance, the enzyme-coupled system promises a sensitive way for further detection of those chemicals which could be oxidized by enzymes and generated H 2 O 2 or glucose. GQDs and other fluorescent materials coupled with several enzymes can be applied to extensive sensing field

    Graphene Quantum Dots and Enzyme-Coupled Biosensor for Highly Sensitive Determination of Hydrogen Peroxide and Glucose

    No full text
    In this paper, a simple and specific graphene quantum dots (GQDs)-based fluorescent biosensor adopted for the determination of glucose based on the combination of the enzyme-coupled method and fluorescence quenching mechanism is demonstrated. Glucose was oxidized by the enzyme glucose oxidase (GOx), forming hydrogen peroxide (H 2 O 2 ) via the catalysis by horseradish peroxidase (HRP). H 2 O 2 was then employed to oxidize phenol to quinone, which led to effective quenching effect in the GQDs–GOx–HRP–phenol system. By optimizing the reaction conditions of the GQDs-enzyme system, a linear relationship between the concentration of glucose and the fluorescence intensity over a range of 0.2–10 μ mol/L was obtained. The limit of detection for glucose is 0.08 μ mol/L. The present biosensor for the determination of glucose showed satisfactory reproducibility and accuracy in human serum samples. Since the enzymes have high specificity and unique affinity to the certain substance, the enzyme-coupled system promises a sensitive way for further detection of those chemicals which could be oxidized by enzymes and generated H 2 O 2 or glucose. GQDs and other fluorescent materials coupled with several enzymes can be applied to extensive sensing field

    Degradation of Tetracycline with BiFeO3 Prepared by a Simple Hydrothermal Method

    No full text
    BiFeO3 particles (BFO) were prepared by a simple hydrothermal method and characterized. BFO was pure, with a wide particle size distribution, and was visible light responsive. Tetracycline was chosen as the model pollutant in this study. The pH value was an important factor influencing the degradation efficiency. The total organic carbon (TOC) measurement was emphasized as a potential standard to evaluate the visible light photocatalytic degradation efficiency. The photo-Fenton process showed much better degradation efficiency and a wider pH adaptive range than photocatalysis or the Fenton process solely. The optimal residual TOC concentrations of the photocatalysis, Fenton and photo-Fenton processes were 81%, 65% and 21%, while the rate constants of the three processes under the same condition where the best residual TOC was acquired were 9.7 × 10−3, 3.2 × 10−2 and 1.5 × 10−1 min−1, respectively. BFO was demonstrated to have excellent stability and reusability. A comparison among different reported advanced oxidation processes removing tetracycline (TC) was also made. Our findings showed that the photo-Fenton process had good potential for antibiotic-containing waste water treatment. It provides a new method to deal with antibiotic pollution

    Synergistic Removal of Pb(II), Cd(II) and Humic Acid by Fe<sub>3</sub>O<sub>4</sub>@Mesoporous Silica-Graphene Oxide Composites

    Get PDF
    <div><p>The synergistic adsorption of heavy metal ions and humic acid can be very challenging. This is largely because of their competitive adsorption onto most adsorbent materials. Hierarchically structured composites containing polyethylenimine-modified magnetic mesoporous silica and graphene oxide (MMSP-GO) were here prepared to address this. Magnetic mesoporous silica microspheres were synthesized and functionalized with PEI molecules, providing many amine groups for chemical conjugation with the carboxyl groups on GO sheets and enhanced the affinity between the pollutants and the mesoporous silica. The features of the composites were characterized using TEM, SEM, TGA, DLS, and VSM measurements. Series adsorption results proved that this system was suitable for simultaneous and efficient removal of heavy metal ions and humic acid using MMSP-GO composites as adsorbents. The maximum adsorption capacities of MMSP-GO for Pb(II) and Cd (II) were 333 and 167 mg g<sup>−1</sup> caculated by Langmuir model, respectively. HA enhances adsorption of heavy metals by MMSP-GO composites due to their interactions in aqueous solutions. The underlying mechanism of synergistic adsorption of heavy metal ions and humic acid were discussed. MMSP-GO composites have shown promise for use as adsorbents in the simultaneous removal of heavy metals and humic acid in wastewater treatment processes.</p></div
    corecore