28 research outputs found

    Influence of radiation on Hemarthria compressa's genetic variations

    Get PDF
    Using the material of Hemarthria compressa (L.F.) R.Br. cv. YA’AN, we carried out this research to study the influence of radiation on the genetic variation of plants. Genetic difference was analyzed with expressed sequence tag-simple sequence repeat (EST-SSR) molecular marker through the comparison of 60Co-γ radiation on H. compressa seed stems and original variety. By using 20 primer pairs, 176 polymerase chain reaction (PCR)-amplifications with clear and consistent bands were obtained. The results showed that 155 of 176 bands were polymorphic, which indicating an 88.07% polymorphism rate, and each pair of primers had 8.8 amplified bands on average; the amplitude of polymorphism information content was 0.4709–0.6952 with an average value 0.6081. The genetic similarity coefficient of H. compressa and its mutants ranged from 0.4318 to 0.8239 with an average of 0.6671. As a consequence, existence of genetic differences between the mutants and the basic material was proved.We gratefully acknowledge financial support from the Modern Agro-industry Technology Research System (CARS-34) and the Sichuan Province Breeding Research grant (2016NZ0098-11).Peer reviewe

    Adsorption of methyl orange onto protonated cross-linked chitosan

    Get PDF
    The adsorption of methyl orange (MO) from aqueous solutions on protonated cross-linked chitosan was studied in a batch system. The results showed that the adsorption of MO onto protonated cross-linked chitosan was affected significantly by initial MO concentration, adsorbent dosage, adsorption temperature, and contact time. The pH value of solution had a minor impact on the adsorption of MO in a pH range of 1.0–9.1. The equilibrium isotherms at different temperatures (293, 303, and 313 K) and pH values (4.5, 6.7, and 9.1) were investigated. Langmuir model was able to describe these Equilibrium data fitted perfectly. The maximum monolayer adsorption capacities obtained from the Langmuir model were 89.29, 130.9, and 180.2 mg/g at 293, 303, and 313 K, respectively. Adsorption kinetics at different concentrations (100, 200 and 300 mg/L) and pH values (4.5, 6.7 and 9.1) were also studied. The kinetics was correlated well with the pseudo second-order model

    Tunable terahertz all-dielectric linear-to-circular polarization conversion metasurface

    No full text
    Terahertz (THz) linear-to-circular (LTC) polarization conversion plays a crucial role in imaging and 6G wireless communication. This paper will give an account of a thermally tunable THz LTC polarization converter by using the active all-dielectric metasurface. It consists of zirconium oxide (ZrO2) microsphere resonators, active strontium titanate (STO) cladding, and flexible polyimide substrate. Through numerical simulation, the amplitude of the ellipticity of the proposed polarization converter at 0.265 THz is –1, indicating that perfect right-hand circular polarization (RHCP) wave is achieved. Meanwhile, the amplitude of the ellipticity is less than –0.8 between 0.247 and 0.278 THz (relative bandwidth is 12%). In addition, with the temperature changes of 180 K (from 200 to 380 K), the operating frequency of the converter can be tuned from 0.220 to 0.291 THz, a sensitivity about 39 GHz/100 K is achieved. Besides, the modulation depth of the ellipticity amplitude can achieve 92% at 0.220 THz, which demonstrates that the converter can output terahertz wave with different polarization states, and the device can be fabricated on a large scale. These perfect conversion performances show that the converter has potential applications in high-speed communication and imaging

    Two kinds of ketoprofen enteric gel beads (CA and CS-SA) using biopolymer alginate

    No full text
    To obtain expected rapid-release and sustained-release of ketoprofen gel beads, this paper adopted biopolymer alginate to prepare alginate beads and chitosan-alginate gel beads. Formulation factors were investigated and optimized by the single factor test. The release of ketoprofen from calcium alginate gel beads in pH 1.0 hydrochloric acid solution was less than 10% during 2 h, then in pH6.8 was about 95% during 45 min, which met the requirements of rapid-release preparations. However, the drug release of chitosan-alginate gel beads in pH1.0 was less than 5% during 2 h, then in pH6.8 was about 50% during 6 h and reached more than 95% during 12 h, which had a good sustained-release behavior. In addition, the release kinetics of keteprofen from the calcium alginate gel beads fitted well with the Korsmeyer–Peppas model and followed a case-II transport mechanism. However, the release of keteprofen from the chitosan-alginate gel beads exhibited a non-Fickian mechanism and based on the mixed mechanisms of diffusion and polymer relaxation from chitosan-alginate beads. In a word, alginate gel beads of ketoprofen were instant analgesic, while chitosan-alginate gel beads could control the release of ketoprofen during gastro-intestinal tract and prolong the drug's action time. Keywords: Gel beads, Enteric rapid-release, Enteric sustained-release, Ketoprofe

    Preparation and Properties of Egg White Dual Cross-Linked Hydrogel with Potential Application for Bone Tissue Engineering

    No full text
    In this study, an egg white dual cross-linked hydrogel was developed based on the principle that the external stimulus can denature proteins and cause them to aggregate, forming hydrogel. The sodium hydroxide was used to induce gelation of the egg white protein, subsequently introducing calcium ions to cross-link with protein chains, thereby producing a dual cross-linked hydrogel. The characteristics of the dual cross-linked hydrogels—including the secondary structure, stability, microstructure, swelling performance, texture properties, and biosafety—were investigated to determine the effects of calcium ion on the egg white hydrogel (EWG) and evaluate the potential application in the field of tissue engineering. Results showed that calcium ions could change the β-sheet content of the protein in EWG after soaking it in different concentrations of CaCl2 solution, leading to changes in the hydrogen bonds and the secondary structure of polypeptide chains. It was confirmed that calcium ions promoted the secondary cross-linking of the protein chain, which facilitated polypeptide folding and aggregation, resulting in enhanced stability of the egg white dual cross-linked hydrogel. Furthermore, the swelling capacity of the EWG decreased with increasing concentration of calcium ions, and the texture properties including hardness, cohesiveness and springiness of the hydrogels were improved. In addition, the calcium cross-linked EWG hydrogels exhibited biocompatibility and cell-surface adhesion in vitro. Hence, this work develops a versatile strategy to fabricate dual cross-linked protein hydrogel with biosafety and cell-surface adhesion, and both the strategy and calcium-egg white cross-linked hydrogels have potential for use in bone tissue engineering

    High thermoelectric performance realized through manipulating layered phonon-electron decoupling

    No full text
    Thermoelectric materials allow for direct conversion between heat and electricity, offering the potential for power generation. The average dimensionless figure of merit ZTave determines device efficiency. N-type tin selenide crystals exhibit outstanding three-dimensional charge and two-dimensional phonon transport along the out-of-plane direction, contributing to a high maximum figure of merit Zmax of ~3.6 × 10−3 per kelvin but a moderate ZTave of ~1.1. We found an attractive high Zmax of ~4.1 × 10−3 per kelvin at 748 kelvin and a ZTave of ~1.7 at 300 to 773 kelvin in chlorine-doped and lead-alloyed tin selenide crystals by phonon-electron decoupling. The chlorine-induced low deformation potential improved the carrier mobility. The lead-induced mass and strain fluctuations reduced the lattice thermal conductivity. Phonon-electron decoupling plays a critical role to achieve high-performance thermoelectrics
    corecore