1,022 research outputs found

    TRPV4, TRPC1, and TRPP2 assemble to form a flow-sensitive heteromeric channel

    Get PDF
    Transient receptor potential (TRP) channels, a superfamily of ion channels, can be divided into 7 subfamilies, including TRPV, TRPC, TRPP, and 4 others. Functional TRP channels are tetrameric complexes consisting of 4 pore-forming subunits. The purpose of this study was to explore the heteromerization of TRP subunits crossing different TRP subfamilies. Two-step coimmunoprecipitation (co-IP) and fluorescence resonance energy transfer (FRET) were used to determine the interaction of the different TRP subunits. Patch-clamp and cytosolic Ca2+ measurements were used to determine the functional role of the ion channels in flow conditions. The analysis demonstrated the formation of a heteromeric TRPV4-C1-P2 complex in primary cultured rat mesenteric artery endothelial cells (MAECs) and HEK293 cells that were cotransfected with TRPV4, TRPC1, and TRPP2. In functional experiments, pore-dead mutants for each of these 3 TRP isoforms nearly abolished the flow-induced cation currents and Ca2+ increase, suggesting that all 3 TRPs contribute to the ion permeation pore of the channels. We identified the first heteromeric TRP channels composed of subunits from 3 different TRP subfamilies. Functionally, this heteromeric TRPV4- C1-P2 channel mediates the flow-induced Ca2+ increase in native vascular endothelial cells.-Du, J., Ma, X., Shen, B., Huang, Y., Birnbaumer, L., Yao, X. TRPV4, TRPC1, and TRPP2 assemble to form a flowsensitive heteromeric channel.Fil: Du, Juan. Chinese University Of Hong Kong; Hong Kong. Anhui Medical University; ChinaFil: Ma, Xin. Chinese University Of Hong Kong; Hong KongFil: Shen, Bing. Chinese University Of Hong Kong; Hong Kong. Anhui Medical University; ChinaFil: Huang, Yu. Chinese University Of Hong Kong; Hong KongFil: Birnbaumer, Lutz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. National Institutes of Health; Estados UnidosFil: Yao, Xiaoqiang. Chinese University Of Hong Kong; Hong Kon

    Experimental quantum e-commerce

    Full text link
    E-commerce, a type of trading that occurs at a high frequency on the Internet, requires guaranteeing the integrity, authentication and non-repudiation of messages through long distance. As current e-commerce schemes are vulnerable to computational attacks, quantum cryptography, ensuring information-theoretic security against adversary's repudiation and forgery, provides a solution to this problem. However, quantum solutions generally have much lower performance compared to classical ones. Besides, when considering imperfect devices, the performance of quantum schemes exhibits a significant decline. Here, for the first time, we demonstrate the whole e-commerce process of involving the signing of a contract and payment among three parties by proposing a quantum e-commerce scheme, which shows resistance of attacks from imperfect devices. Results show that with a maximum attenuation of 25 dB among participants, our scheme can achieve a signature rate of 0.82 times per second for an agreement size of approximately 0.428 megabit. This proposed scheme presents a promising solution for providing information-theoretic security for e-commerce.Comment: 16 pages, 5 figures, Comments are weclome

    Effect of Freeze-Thaw Cycle on Shear Strength of Lime-Solidified Dispersion Soils

    Get PDF
    The freeze-thaw cycle of saline soil in the seasonal frozen area will produce diseases such as frost heave and thaw settlement, road frost boiling, collapse and uneven settlement. In order to reduce the occurrence of these undesirable phenomena, it is often necessary to improve the saline soil in engineering. In this paper, the typical carbonate saline soil in the west of Jilin Province, China is taken as the research object. By adding different content of lime (0%, 3%, 6%, 9%, 12%, 15%), the change of mechanical strength of lime solidified saline soil under different freeze-thaw cycles (0, 1, 3, 6, 10, 30, 60 times) is studied. The mechanical analysis is carried out by combining particle size analysis test and SEM image. The test results show that although repeated freeze-thaw cycles make the soil structure loose and the mechanical strength greatly reduced, the soil particles agglomerate obviously after adding lime, its dispersion is restrained by the flocculation of clay colloid, and the shear strength of soil is improved by the increase of the cohesive force between clay particles, and the optimal lime mixing ratio of the saline soil in this area is 9%

    Critical behavior of confined supramolecular soft materials on a microscopic scale

    Full text link
    The formation of fiber networks and the resulting rheological properties of supramolecular soft materials are dramatically influenced when the volume of the system is reduced to a threshold. Unlike un-confined systems, the formation of fiber networks under volume confinement is independent of temperature and solute concentration

    One-Time Universal Hashing Quantum Digital Signatures without Perfect Keys

    Full text link
    Quantum digital signatures (QDS), generating correlated bit strings among three remote parties for signatures through quantum law, can guarantee non-repudiation, authenticity, and integrity of messages. Recently, one-time universal hashing QDS framework, exploiting the quantum asymmetric encryption and universal hash functions, has been proposed to significantly improve the signature rate and ensure unconditional security by directly signing the hash value of long messages. However, similar to quantum key distribution, this framework utilizes keys with perfect secrecy by performing privacy amplification that introduces cumbersome matrix operations, thereby consuming large computational resources, causing delays and increasing failure probability. Here, we prove that, different from private communication, imperfect quantum keys with limited information leakage can be used for digital signatures and authentication without compromising the security while having eight orders of magnitude improvement on signature rate for signing a megabit message compared with conventional single-bit schemes. This study significantly reduces the delay for data postprocessing and is compatible with any quantum key generation protocols. In our simulation, taking two-photon twin-field key generation protocol as an example, QDS can be practically implemented over a fiber distance of 650 km between the signer and receiver. For the first time, this study offers a cryptographic application of quantum keys with imperfect secrecy and paves a way for the practical and agile implementation of digital signatures in a future quantum network.Comment: Comments are welcome

    DNAGPT: A Generalized Pre-trained Tool for Versatile DNA Sequence Analysis Tasks

    Full text link
    Pre-trained large language models demonstrate potential in extracting information from DNA sequences, yet adapting to a variety of tasks and data modalities remains a challenge. To address this, we propose DNAGPT, a generalized DNA pre-training model trained on over 200 billion base pairs from all mammals. By enhancing the classic GPT model with a binary classification task (DNA sequence order), a numerical regression task (guanine-cytosine content prediction), and a comprehensive token language, DNAGPT can handle versatile DNA analysis tasks while processing both sequence and numerical data. Our evaluation of genomic signal and region recognition, mRNA abundance regression, and artificial genomes generation tasks demonstrates DNAGPT's superior performance compared to existing models designed for specific downstream tasks, benefiting from pre-training using the newly designed model structure
    corecore