453 research outputs found

    Two-pole structures demystified: chiral dynamics at work

    Full text link
    In the past two decades, one of the most puzzling phenomena discovered in hadron physics is that a nominal hadronic state can actually correspond to two poles on the complex energy plane. This phenomenon was first noticed for the Λ(1405)\Lambda(1405), and then for K1(1270)K_1(1270) and to a less extent for D0∗(2300)D_0^*(2300). In this Letter, we show explicitly how the two-pole structures emerge from the underlying chiral dynamics describing the coupled-channel interactions between heavy matter particles and Nambu-Goldstone bosons. In particular, the fact that two poles appear between the two dominant coupled channels can be attributed to the particular form of the leading order chiral potentials of the Weinberg-Tomozawa form. Their lineshapes overlap with each other because the degeneracy of the two coupled channels is only broken by explicit chiral symmetry breaking of higher order. We predict that for light-quark~(pion) masses heavier than their physical values, the two-pole structures disappear, which can be easily verified by future lattice QCD simulations. Furthermore, we anticipate similar two-pole structures in other systems, such as the isopin 1/21/2 KˉΣc−πΞc′\bar{K}\Sigma_c-\pi\Xi'_c coupled channel, which await for experimental discoveries.Comment: 5 pages, 4 figure

    Numerical simulation of the flow field and concentration distribution in the bulk growth of silicon carbide crystals

    Get PDF
    Abstract The physical vapor transport (PVT) method is being widely used to grow large-size single SiC crystals. The growth process is associated with heat and mass transport in the growth chamber, chemical reactions among multiple species as well as phase change at the crystal/gas interface. The current paper aims at studying and verifying the transport mechanism and growth kinetics model by demonstrating the flow field and species concentration distribution in the growth system. We have developed a coupled model, which takes into account the mass transport and growth kinetics. Numerical simulation is carried out by employing an in-house developed software based on finite volume method. The results calculated are in good agreement with the experimental observation.

    Survive the north: transplantation for conservation of mangrove forests requires consideration of influences of low temperature, mating system and their joint effects on effective size of the reforested populations

    Get PDF
    Mangrove forests, which occur in the intertidal regions of tropical and sub-tropical zones, have high ecological and economic values. They have rapidly reduced over the past decades due to various reasons. Reforestation is a common strategy for the conservation of mangroves, but information on the renewal capacity and viability of these artificial mangrove populations is still lacking. Here, we estimated the effective population size (NE) of an artificial population of Kandelia obovata (Rhizophoraceae) and explored the effects of intrinsic and extrinsic factors on changes in NE to evaluate population viability and develop appropriate management strategies for mangrove forests. This population consisted of three ecologically and genetically differentiated groups that had experienced a major low-temperature event during the winter of 2015–2016 and varied in cold resistance. We first detected population bottlenecks and estimated contemporary values of NE for different groups using microsatellite data. Next, we performed paternity analyses for seedlings and propagules to explore variations in the reproductive success of individuals within the three groups before and after the low-temperature event. Lastly, we simulated four scenarios to characterize the effects of low temperature, mating system, and variance in reproductive success on changes in NE in a hypothetical metapopulation based on empirical estimates. Our results show that groups with moderate or poor cold resistance experienced local bottlenecks, and shifts in effective breeders occurred following the low-temperature event, which indicates that low temperature has an effect on not only population size but also reproductive success. Furthermore, our simulations revealed that changes in NE are jointly affected by reproductive success, mating system, and environmental conditions. These findings enhance our understanding of the multiple factors that affect NE, and provide key information that will aid the reforestation and management of mangrove forests, especially when they are introduced to high-latitude areas

    A controllable superconducting electromechanical oscillator with a suspended membrane

    Full text link
    We fabricate a microscale electromechanical system, in which a suspended superconducting membrane, treated as a mechanical oscillator, capacitively couples to a superconducting microwave resonator. As the microwave driving power increases, nonmonotonic dependence of the resonance frequency of the mechanical oscillator on the driving power has been observed. We also demonstrate the optical switching of the resonance frequency of the mechanical oscillator. Theoretical models for qualitative understanding of our experimental observations are presented. Our experiment may pave the way for the application of a mechanical oscillator with its resonance frequency controlled by the electromagnetic and/or optical fields, such as a microwave-optical interface and a controllable element in a superqubit-mechanical oscillator hybrid system.Comment: 8 pages,4 figure

    Beneficial Role of Rosuvastatin in Blood–Brain Barrier Damage Following Experimental Ischemic Stroke

    Get PDF
    Hemorrhage transformation is the most challenging preventable complication in thrombolytic therapy and is related to recombinant tissue plasminogen activator (rt-PA)-induced blood–brain barrier (BBB) damage. Intraperitoneal injections of normal or high doses of rosuvastatin were administered to Balb/c mice 20 min prior to middle cerebral artery occlusion (MCAO) surgery for 3 h followed by reperfusion with rt-PA thrombolytic therapy and cerebral blood flow monitoring to investigate whether a high or normal dose of rosuvastatin reduces BBB damage after brain ischemia and rt-PA reperfusion. The integrity of the BBB was ameliorated by normal and high doses of rosuvastatin as determined from Evans blue staining, ultrastructure assessments and immunochemistry at 24 h after reperfusion. The levels of TJ proteins were preserved, potentially by targeting platelet-derived growth factor receptor α (PDGFR-α) and low-density lipoprotein receptor-related protein 1 (LRP1) to inhibit the expression of matrix metalloproteinase proteins (MMPs) by reducing the levels of phosphorylated c-jun-N-terminal kinase (pJNK), phosphorylated mitogen-activated protein kinase (MAPK) p38 (pP38) and increasing the levels of phosphorylated extracellular regulated protein kinases (pERK), and tissue inhibitor of metalloproteinases (TIMPs), as inferred from Western blotting and molecular docking analyses. In summary, rosuvastatin reduced rt-PA therapy-associated BBB permeability by PDGFR-α- and LRP1-associated MAPK pathways to reduce the mortality of mice, and a normal dose of rosuvastatin exerted greater preventative effects on reducing BBB damage than did a high dose in the time window of thrombolytic therapy

    Characteristic Analysis from Excessive to Deficient Syndromes in Hepatocarcinoma Underlying miRNA Array Data

    Get PDF
    Traditional Chinese medicine (TCM) treatment is regarded as a safe and effective method for many diseases. In this study, the characteristics among excessive, excessive-deficient, and deficient syndromes of Hepatocellular carcinoma (HCC) were studied using miRNA array data. We first calculated the differentially expressed miRNAs based on random module t-test and classified three TCM syndromes of HCC using SVM method. Then, the weighted miRNA-target networks were constructed for different TCM syndromes using predicted miRNA targets. Subsequently, the prioritized target genes of upexpression network of TCM syndromes were analyzed using DAVID online analysis. The results showed that there are distinctly different hierarchical cluster and network structure of TCM syndromes in HCC, but the excessive-deficient combination syndrome is extrinsically close to deficient syndrome. GO and pathway analysis revealed that the molecular mechanisms of excessive-deficient and deficient syndromes of HCC are more complex than excessive syndrome. Furthermore, although excessive-deficient and deficient syndromes have similar complex mechanisms, excessive-deficient syndrome is more involved than deficient syndrome in development of cancer process. This study suggested that miRNAs might be important mediators involved in the changing process from excessive to deficient syndromes and could be potential molecular markers for the diagnosis of TCM syndromes in HCC
    • …
    corecore