303 research outputs found

    Assessing the effects of mitofusin 2 deficiency in the adult heart using 3D electron tomography

    Get PDF
    The effects of mitofusin 2 (MFN2) deficiency, on mitochondrial morphology and the mitochondria-junctional sarcoplasmic reticulum (jSR) complex in the adult heart, have been previously investigated using 2D electron microscopy, an approach which is unable to provide a 3D spatial assessment of these imaging parameters. Here, we use 3D electron tomography to show that MFN2-deficient mitochondria are larger in volume, more elongated, and less rounded; have fewer mitochondria-jSR contacts, and an increase in the distance between mitochondria and jSR, when compared to WT mitochondria. In comparison to 2D electron microscopy, 3D electron tomography can provide further insights into mitochondrial morphology and the mitochondria-jSR complex in the adult heart

    Beyond deficit-based models of learners' cognition: Interpreting engineering students' difficulties with sense-making in terms of fine-grained epistemological and conceptual dynamics

    Full text link
    Researchers have argued against deficit-based explanations of students' troubles with mathematical sense-making, pointing instead to factors such as epistemology: students' beliefs about knowledge and learning can hinder them from activating and integrating productive knowledge they have. In this case study of an engineering major solving problems (about content from his introductory physics course) during a clinical interview, we show that "Jim" has all the mathematical and conceptual knowledge he would need to solve a hydrostatic pressure problem that we posed to him. But he reaches and sticks with an incorrect answer that violates common sense. We argue that his lack of mathematical sense-making-specifically, translating and reconciling between mathematical and everyday/common-sense reasoning-stems in part from his epistemological views, i.e., his views about the nature of knowledge and learning. He regards mathematical equations as much more trustworthy than everyday reasoning, and he does not view mathematical equations as expressing meaning that tractably connects to common sense. For these reasons, he does not view reconciling between common sense and mathematical formalism as either necessary or plausible to accomplish. We, however, avoid a potential "deficit trap"-substituting an epistemological deficit for a concepts/skills deficit-by incorporating multiple, context-dependent epistemological stances into Jim's cognitive dynamics. We argue that Jim's epistemological stance contains productive seeds that instructors could build upon to support Jim's mathematical sense-making: He does see common-sense as connected to formalism (though not always tractably so) and in some circumstances this connection is both salient and valued.Comment: Submitted to the Journal of Engineering Educatio

    On the Optimum Long Baseline for the Next Generation Neutrino Oscillation Experiments

    Full text link
    For high energy long baseline neutrino oscillation experiments, we propose a Figure of Merit criterion to compare the statistical quality of experiments at various oscillation distances under the condition of identical detectors and a given neutrino beam. We take into account all possible experimental errors under general consideration. In this way the Figure of Merit is closely related to the usual statistical criterion of number of sigmas. We use a realistic neutrino beam for an entry level neutrino factory and a possible superbeam from a meson source and a 100 kt detector for the calculation. We considered in detail four oscillation distances, 300 km, 700 km, 2100 km and 3000 km, in the neutrino energy range of 0.5-20 GeV for a 20 GeV entry level neutrino factory and a 50 GeV superbeam. We found that the very long baselines of 2100 km and 3000 km are preferred for the neutrino factory according to the figure of merit criterion. Our results also show that, for a neutrino factory, lower primary muon energies such as 20 GeV are preferred rather than higher ones such as 30 or 50 GeV. For the superbeam, the combination of a long baseline such as 300 km and a very long baseline like 2100 km will form a complete measurement of the oscillation parameters besides the CP phase. To measure the CP phase in a superbeam, a larger detector (a factor 3 beyond what is considered in this article) and/or a higher intensity beam will be needed to put some significant constraints on the size of the CP angle.Comment: 21 LaTeX pages, 13 PS figures, typos corrected, references adde

    R-parity-violating SUSY effects and signals in single top production at the Tevatron

    Full text link
    We discuss single top quark production via u^i+\bar d^j \to t+\bar b at the Fermilab Tevatron in the minimal supersymmetric model with R-parity violation. We find that within the allowed range of coupling constants, the lepton-number violating couplings can give rise to observable effects when the slepton mass lies in a specific narrow range. For the baryon-number violating couplings, the contribution to the production rate can be quite large in the presently allowed range of the coupling constants. We show that the measurement of single top production at the upgraded Tevatron can be used to constrain a linear combination of products of the R-parity violating couplings.Comment: revised version which will appear in Phys.Rev.

    Single Top Quark Production via FCNC Couplings at Hadron Colliders

    Get PDF
    We calculate single top-quark production at hadron colliders via the chromo-magnetic flavor-changing neutral current couplings tˉcg\bar tcg and tˉug\bar tug. We find that the strength for the anomalous tˉcg\bar tcg (tˉug\bar tug) coupling may be probed to κc/Λ=0.092TeV1\kappa_c / \Lambda = 0.092 {TeV}^{-1} (κu/Λ=0.026TeV1\kappa_u / \Lambda = 0.026 {TeV}^{-1}) at the Tevatron with 2fb12 {fb}^{-1} of data and κc/Λ=0.013TeV1\kappa_c / \Lambda = 0.013 {TeV}^{-1} (κu/Λ=0.0061TeV1\kappa_u / \Lambda = 0.0061 {TeV}^{-1}) at the LHC with 10fb110 {fb}^{-1} of data. The two couplings may be distinguished by a comparision of the single top signal with the direct top and top decay signals for these couplings.Comment: 18 pages, 6 figures, 3 table

    R-parity violation and top quark polarization at the Fermilab Tevatron collider

    Full text link
    The lepton or baryon number violating top quark interactions in the supersymmetric standard model with R parity violation contribute to the process d dbar to t tbar at the tree level via the t- or u-channel sfermion exchange. Since these interactions are chiral, they induce polarization to the top quark in the t tbar events at hadron colliders. We show in this article that the polarization can be a useful observable for probing these interactions at the upgraded Fermilab Tevatron collider, because the polarization is expected to be very small in the standard model.Comment: 15 pages, 5 figure

    Re-entrant relaxor ferroelectric behaviour in Nb-doped BiFeO 3 –BaTiO 3 ceramics †

    Get PDF
    BiFeO3–BaTiO3 (BF–BT) solid solutions exhibit great promise as the basis for high temperature piezoelectric transducers and energy storage dielectrics, but the fundamental mechanisms governing their functional properties require further clarification. In the present study, both pure and niobium-doped 0.7BF–0.3BT ceramics are synthesized by solid state reaction and their structure–property relationships are systematically investigated. It is shown that substituting a low concentration of Ti with Nb at a level of 0.5 at% increases the resistivity of BF–BT ceramics and facilitates ferroelectric switching at high electric field levels. Stable planar piezoelectric coupling factor values are achieved with a variation from 0.35 to 0.45 over the temperature range from 100 to 430 °C. In addition to the ferroelectric-paraelectric phase transformation at the Curie point (∼430 °C), a frequency-dependent relaxation of the dielectric permittivity and associated loss peak are observed over the temperature range from −50 to +150 °C. These effects are correlated with anomalous enhancement of the remanent polarization and structural (rhombohedral) distortion with increasing temperature, indicating the occurrence of a re-entrant relaxor ferroelectric transformation on cooling. The results of the study provide new insight into the thermal evolution of structure and the corresponding functional properties in BF–BT and related solid solutions
    corecore