756 research outputs found

    RT-MonoDepth: Real-time Monocular Depth Estimation on Embedded Systems

    Full text link
    Depth sensing is a crucial function of unmanned aerial vehicles and autonomous vehicles. Due to the small size and simple structure of monocular cameras, there has been a growing interest in depth estimation from a single RGB image. However, state-of-the-art monocular CNN-based depth estimation methods using fairly complex deep neural networks are too slow for real-time inference on embedded platforms. This paper addresses the problem of real-time depth estimation on embedded systems. We propose two efficient and lightweight encoder-decoder network architectures, RT-MonoDepth and RT-MonoDepth-S, to reduce computational complexity and latency. Our methodologies demonstrate that it is possible to achieve similar accuracy as prior state-of-the-art works on depth estimation at a faster inference speed. Our proposed networks, RT-MonoDepth and RT-MonoDepth-S, runs at 18.4\&30.5 FPS on NVIDIA Jetson Nano and 253.0\&364.1 FPS on NVIDIA Jetson AGX Orin on a single RGB image of resolution 640×\times192, and achieve relative state-of-the-art accuracy on the KITTI dataset. To the best of the authors' knowledge, this paper achieves the best accuracy and fastest inference speed compared with existing fast monocular depth estimation methods.Comment: 8 pages, 5 figure

    Bifurcation and chaos of a flag in an inviscid flow

    Get PDF
    A two-dimensional model is developed to study the flutter instability of a flag immersed in an inviscid flow. Two dimensionless parameters governing the system are the structure-to-fluid mass ratio M⁎ and the dimensionless incoming flow velocity U⁎. A transition from a static steady state to a chaotic state is investigated at a fixed M⁎=1 with increasing U⁎. Five single-frequency periodic flapping states are identified along the route, including four symmetrical oscillation states and one asymmetrical oscillation state. For the symmetrical states, the oscillation frequency increases with the increase of U⁎, and the drag force on the flag changes linearly with the Strouhal number. Chaotic states are observed when U⁎ is relatively large. Three chaotic windows are observed along the route. In addition, the system transitions from one periodic state to another through either period-doubling bifurcations or quasi-periodic bifurcations, and it transitions from a periodic state to a chaotic state through quasi-periodic bifurcations

    An Efficient Nonlinear Filter for Spacecraft Attitude Estimation

    Get PDF
    Increasing the computational efficiency of attitude estimation is a critical problem related to modern spacecraft, especially for those with limited computing resources. In this paper, a computationally efficient nonlinear attitude estimation strategy based on the vector observations is proposed. The Rodrigues parameter is chosen as the local error attitude parameter, to maintain the normalization constraint for the quaternion in the global estimator. The proposed attitude estimator is performed in four stages. First, the local attitude estimation error system is described by a polytopic linear model. Then the local error attitude estimator is designed with constant coefficients based on the robust H2 filtering algorithm. Subsequently, the attitude predictions and the local error attitude estimations are calculated by a gyro based model and the local error attitude estimator. Finally, the attitude estimations are updated by the predicted attitude with the local error attitude estimations. Since the local error attitude estimator is with constant coefficients, it does not need to calculate the matrix inversion for the filter gain matrix or update the Jacobian matrixes online to obtain the local error attitude estimations. As a result, the computational complexity of the proposed attitude estimator reduces significantly. Simulation results demonstrate the efficiency of the proposed attitude estimation strategy

    A review of microwave devices based on CVD-grown graphene with experimental demonstration

    Get PDF
    As a two-dimension planar material with zero-gap structure, graphene has a lot of outstanding properties in microwave frequency band, and the chemical vapor deposition (CVD) method can produce the large-scale graphene sheets with high quality for applications. Thus, the study about the microwave devices based on CVD-grown graphene has been aroused wide interests in the past few years. In this paper, mainly concentrating on the research by Chinese scientific groups, we review the development of microwave devices based on the CVD-grown graphene which are all validated by experiments, including attenuators, absorbers, antennas, electromagnetic interference (EMI) shielding and beam reconfiguration

    Performance Improvement in Pile Anchor System for Deep Foundation Excavation Using Electroosmotic Chemical Treatment

    Get PDF
    Anchoring force is vital to ensure the acceptable performance of a pile anchor system when supporting deep foundation excavation. .e soft soil has several physical properties, such as low shear strength, high water content, large void ratio, and high flowability. Traditional grouting and anchoring techniques have demonstrated technical limits to deal with these soil properties in engineering projects, and accordingly, the anchoring force in the pile anchor system is difficult to meet design requirements. .is paper conducted an experimental investigation on the performance improvement in a pile anchor system using the electroosmotic chemical treatment method, with an emphasis on the deep foundation application. Experimental tests and field studies were designed to enhance anchor capacity of a pile anchor system using self-designed devices. .e laboratory experiments utilized a simplified anchor system in which anchors were designed as the electrodes to conduct the electroosmotic chemical treatment and consolidate the soft marine soil collected from the project site. In addition, static load tests were conducted on the tested soil to measure the anchoring force. Finally, parametric analyses were performed to investigate effects of several parameters on anchoring force in terms of the ultimate pull-out capacity of the anchor, identifying critical parameters for the field study. Based on laboratory test results, field studies were carried out in the Yingkou city. .e results from field studies were compared with laboratory test results to validate feasibility of electroosmotic chemical treatment for a pile anchor system
    corecore