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Increasing the computational efficiency of attitude estimation is a critical problem related to modern spacecraft, especially for
those with limited computing resources. In this paper, a computationally efficient nonlinear attitude estimation strategy based
on the vector observations is proposed. The Rodrigues parameter is chosen as the local error attitude parameter, to maintain the
normalization constraint for the quaternion in the global estimator. The proposed attitude estimator is performed in four stages.
First, the local attitude estimation error system is described by a polytopic linear model. Then the local error attitude estimator
is designed with constant coefficients based on the robust 𝐻

2
filtering algorithm. Subsequently, the attitude predictions and the

local error attitude estimations are calculated by a gyro based model and the local error attitude estimator. Finally, the attitude
estimations are updated by the predicted attitude with the local error attitude estimations. Since the local error attitude estimator is
with constant coefficients, it does not need to calculate thematrix inversion for the filter gainmatrix or update the Jacobianmatrixes
online to obtain the local error attitude estimations. As a result, the computational complexity of the proposed attitude estimator
reduces significantly. Simulation results demonstrate the efficiency of the proposed attitude estimation strategy.

1. Introduction

Attitude determination is a very important part for a space-
craft to achieve its designed mission.There are various meth-
ods for the spacecraft attitude determination. They can be
divided into two classes: deterministic method and optimal
estimationmethod [1].Thedeterministicmethod, theTRIAD
algorithm, uses a minimal set of date and then solves three
possibly nonlinear equations to obtain the attitude [1]. It
is simple and elegant; however, it is suboptimal and of
limited use because it makes use of only two unit-vector
measurements and ignores one piece of information from
one of the unit vectors [2]. The optimal estimation method
is based on the solutions to the Wahba’s problems, which
obtains the optimal attitude estimation by minimizing an
appropriate loss function.

There are many nonlinear estimation algorithms for
the spacecraft attitude estimation since it is essentially a
nonlinear problem. The most widely used algorithm for real
time attitude estimation is the EKF. The EKF is recursive
and easy to implement, but the accuracy can be surprisingly
bad in the cases that the dynamic and the measurement

models have highly nonlinearities or the system is with
large process noise [3, 4]. The poor performance has driven
several nonlinear filters for attitude estimation, among which
the sigma point filters have attracted much attention, such
as the Unscented Kalman Filter (UKF) [5], the Cubature
Kalman Filter (CKF) [6], the Gauss-Hermite Quadrature
Filter (GHQF) [7], and the Particle Filter (PF) [8]. They
deal with the nonlinear functions directly by choosing some
points to approximate the probability density function of the
nonlinear functions according to certain rules. It is generally
believed that the sigma point filters are more accurate than
the EKF; nonetheless, the computational cost of the sigma
point filter seems high for engineering implementation [9].
Even the implementation of the EKF is also computationally
complex [10], because the Jacobian matrixes are required to
update online which can be a very cumbersome and error-
prone process, and it needs to calculate the matrix inversion
for the gain matrix, resulting in heavy burden of the onboard
computer especially for the systems with high dimension.

Several alternatives on the computational cost of the filter
have been developed for attitude estimation. Wei used the
optimal-REQUEST to estimate the attitude and the UKF to

Hindawi Publishing Corporation
International Journal of Aerospace Engineering
Volume 2014, Article ID 540235, 11 pages
http://dx.doi.org/10.1155/2014/540235

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192631961?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 International Journal of Aerospace Engineering

estimate the gyro drifts [11]. The computational cost of the
attitude estimator was reduced by setting the state dimension
to three rather than six. Fan and Kiani improved the real-
time performance of the attitude estimator byminimizing the
number of the required sigma points [9, 12]. Tang et al., Miao
et al., and Choukroun et al. presented a reduced quaternion
measurement model without losing information to reduce
the computational complexity of the attitude estimator [6, 13,
14]. The improved methods mentioned above have reduced
the computational cost of the attitude estimator efficiently;
nevertheless, the improved sigma point methods remain to
have high computational cost for spacecraft which is small
and with limited computational abilities. The calculation of
the matrix inversion remains in the attitude estimator on the
bias of reducing the dimension of the measurement model.

In this paper, an efficient nonlinear filtering method is
developed for spacecraft attitude estimation. By introducing
the polytopic linear differential inclusion (PLDI) theory
given by Boyd et al. [15], the local attitude estimation error
system is represented by an uncertain polytopic linear model.
This leads to the local error attitude estimator designed
with constant filter coefficients, without calculating matrix
inversion or updating the Jacobian matrixes online. Thus the
computational cost is sharply reduced.

The rest of the paper is organized as follows: Section 2
briefly introduces the attitude kinematics and the sensor
models. Section 3 presents the implementation of the efficient
nonlinear attitude estimator in detail. Section 4 demonstrates
the performance of the attitude estimator and compares the
results of this method with the Multiplicative EKF (MEKF)
and other filters. Section 5 gives the conclusion remarks.

2. Attitude Kinematics and Sensor Models

In this section, the attitude kinematics and the sensor models
are briefly introduced.

The spacecraft attitude can be described by various
parameters, such as the direction cosine matrix, the principal
axis and angle, the Euler angels, quaternion, Rodrigues
parameters (RPs), and the modified Rodrigues parameters
(MRPs). The most widely used attitude parameter is the
quaternion because of its nonsingular character for any
arbitrary rotation angle and its bilinear kinematic equation.

The quaternion is defined as

𝑞 = [
⃗𝑞

𝑞
4

] =

[
[
[

[

⃗𝑒 sin(𝜃
2
)

cos(𝜃
2
)

]
]
]

]

, (1)

where ⃗𝑒 is principal rotation axis and 𝜃 is the corresponding
rotation angle.

The attitude kinematic equation in the quaternion form is
given by

̇𝑞 =
1

2
Ω (𝜔) 𝑞 =

1

2
Ξ (𝑞) 𝜔, (2)

where

Ξ (𝑞) = [
𝑞
4
𝐼
3 × 3

+ [ ⃗𝑞×]

− ⃗𝑞
𝑇 ] , Ω (𝜔) = [

− [𝜔×] 𝜔

−𝜔
𝑇

0
] ,

(3)

and 𝜔 is the angular velocity of the spacecraft.
The gyro is commonly used to measure the angular

velocity of the spacecraft; a general gyro model is given by

𝑢 = 𝜔 + 𝑏 + 𝑛
𝑔
, (4)

where 𝑛
𝑔
is the measurement noise and 𝑏 is the drift rate bias

driven by a white noise

�̇� = 𝑛
𝑏
, (5)

where 𝑛
𝑏
is assumed to be white noise.

In most practical applications, a typical attitude esti-
mation system for the spacecraft comprises several gyros
and vector sensors, such as the sun sensor, star sensor, and
magnetometer. Therefore, the vector observation is chosen
as the attitude measurement for the most general case.
The measurement model for a signal vector observation is
described as

𝑟
𝑗

𝑏
= 𝑅 (𝑞) 𝑟

𝑗

𝑖
+ V𝑗, (6)

where 𝑅(𝑞) is the attitude matrix, 𝑟𝑗
𝑏
is the observation vector,

and 𝑟𝑗
𝑖
is the known reference vector. V𝑗 is the measurement

noise assumed to bewhite noise, and the superscript 𝑗denotes
the index of the observation vector.

3. The Computationally Efficient
Attitude Estimator

The spacecraft attitude state is given by the attitude quater-
nion and the gyro drift rate bias

𝑥 = [𝑞
𝑇
𝑏
𝑇
]
𝑇

. (7)

Then the dynamic model for the attitude estimation system is

�̇� = [
̇𝑞

�̇�
] = [

1

2
Ω (𝑢 − 𝑏) 𝑞

0
3×1

] + [
−
1

2
Ξ (𝑞) 𝑛

𝑔

𝑛
𝑏

] . (8)

Denote the error attitude state as

𝛿𝑞 = 𝑞 ⊗ 𝑞
−1
, 𝛿𝑏 = 𝑏 − �̂�, (9)

where 𝑞 and �̂� are the predicted attitude quaternion and gyro
drift rate bias and 𝑞−1 is the inversion of 𝑞.Thedynamicmodel
for the attitude estimation error system is [16]

𝛿 ̇𝑞 = [
− [�̂�×] 𝛿 ⃗𝑞

0
] +

1

2
Ω (𝛿𝜔) 𝛿𝑞,

𝛿�̇� = 𝑛
𝑏
,

(10)
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where �̂� is the predicted angular velocity; the angular velocity
error is expressed as follows:

𝛿𝜔 = 𝜔 − �̂� = 𝑢 − 𝑏 − 𝑛
𝑔
− (𝑢 − �̂�) = −𝛿𝑏 − 𝑛

𝑔
. (11)

Substitute the above equation into (10); the dynamic
model for the attitude estimation error system can be rewrit-
ten as

𝛿 ̇𝑞 = [
− [�̂�×] 𝛿 ⃗𝑞

0
] −

1

2
[
𝛿𝑞
4
𝛿𝑏 + [𝛿 ⃗𝑞×] 𝛿𝑏

𝛿 ⃗𝑞
𝑇
𝛿𝑏

] −
1

2
Ξ (𝛿𝑞) 𝑛

𝑔
,

𝛿�̇� = 𝑛
𝑏
.

(12)

The quaternion must obey a normalization constraint.
In order to ensure that the quaternion maintains the nor-
malization constraint, the most common attitude quaternion
estimation method uses an unconstrained three-component
vector to represent the local attitude error. In this paper, the
RPs are chosen as the local attitude error parameter.The error
RPs is defined in the terms of the error quaternion by

𝛿𝑔 =
𝛿 ⃗𝑞

𝛿𝑞
4

, (13)

and the inverse transformation is given by

𝛿 ⃗𝑞 =
𝛿𝑔

√1 + 𝛿𝑔𝑇𝛿𝑔

, 𝛿𝑞
4
=

1

√1 + 𝛿𝑔𝑇𝛿𝑔

. (14)

If the attitude error is quite small or tends to be zero, (13) can
be approximated as

𝛿𝑔 = 𝛿 ⃗𝑞. (15)

Therefore, the dynamic model (12) can be easily approxi-
mated to the first order form by using the error RPs

𝛿�̇� = [
𝛿 ̇𝑔

𝛿�̇�
] = 𝐹 [

𝛿𝑔

𝛿𝑏
] + 𝑛
𝑤
, (16)

where

𝐹 = −[
[�̂�×]

1

2
𝐼
3

0
3

0
3

] , 𝑛
𝑤
= [

−
1

2
𝑛
𝑔

𝑛
𝑏

] . (17)

The corresponding measurement equation of the attitude
estimation error system is

𝛿𝑟
𝑏
= 𝑟
𝑏
− 𝑟
𝑏
= 𝐻𝛿𝑥 + V, (18)

where

𝑟
𝑏
=

[
[
[
[
[
[
[

[

𝑟
1

𝑏

...
𝑟
𝑗

𝑏

...
𝑟
𝑛

𝑏

]
]
]
]
]
]
]

]

, 𝑟
𝑏
=

[
[
[
[
[
[
[

[

𝑟
1

𝑏

...
𝑟
𝑗

𝑏

...
𝑟
𝑛

𝑏

]
]
]
]
]
]
]

]

, V =

[
[
[
[
[
[
[

[

V1
...
V𝑗
...
V𝑛

]
]
]
]
]
]
]

]

, 𝐻 =

[
[
[
[
[
[
[

[

ℎ
1

...
ℎ
𝑗

...
ℎ
𝑛

]
]
]
]
]
]
]

]

,

(19)

where ℎ𝑗 = [[2(𝑅(𝑞)𝑟
𝑗

𝑖
)×] 0

3
] , 𝑗 = 1, . . . , 𝑛, and 𝑛 is the total

number of observation vectors.

3.1. The Multiplicative EKF for Attitude Estimation. Themost
well-known nonlinear filter for spacecraft attitude estimation
is the EKF.There are several different implementations of the
attitude EKF, depending on both the attitude parameter used
in the state vector and the form in which observations are
input [3].The best known andmost widely used attitude EKF
is MEKF. The attitude MEKF is derived from the following
equations.

Attitude predictions [5]:

𝑞
𝑘/𝑘−1

= Ω
𝑘/𝑘−1

(�̂�
𝑘−1

) 𝑞
𝑘−1

,

�̂�
𝑘/𝑘−1

= �̂�
𝑘−1

.

(20)

Predicted measurement error:
Δ𝑟
𝑏𝑘
= 𝑟
𝑏𝑘
− 𝑟
𝑏𝑘
,

𝑟
𝑗

𝑏𝑘
= 𝑅 (𝑞

𝑘/𝑘−1
) 𝑟
𝑗

𝑖
,

𝑟
𝑏𝑘
= [(𝑟
1

𝑏𝑘
)
𝑇

⋅ ⋅ ⋅ (𝑟
𝑗

𝑏𝑘
)
𝑇

⋅ ⋅ ⋅ (𝑟
𝑛

𝑏𝑘
)
𝑇
]

𝑇

.

(21)

Covariance matrix for the attitude predicted errors:

𝑃
𝑘/𝑘−1

= Φ
𝑘/𝑘−1

𝑃
𝑘−1

Φ
𝑇

𝑘/𝑘−1
+ 𝑄
𝑤𝑘
. (22)

Gain matrix:

𝐾
𝑘
= 𝑃
𝑘/𝑘−1

𝐻
𝑇

𝑘
[𝐻
𝑘
𝑃
𝑘/𝑘−1

𝐻
𝑇

𝑘
+ 𝑄V𝑘]

−1

. (23)

Covariance matrix for the attitude estimation errors:

𝑃
𝑘
= (𝐼
6
− 𝐾
𝑘
𝐻
𝑘
) 𝑃
𝑘/𝑘−1

(𝐼
6
− 𝐾
𝑘
𝐻
𝑘
)
𝑇

+ 𝐾
𝑘
𝑄V𝑘𝐾
𝑇

𝑘
. (24)

Local error attitude estimations:

Δ𝑥
𝑘
= [

Δ𝑔
𝑘

Δ�̂�
𝑘

] = 𝐾
𝑘
Δ𝑟
𝑏𝑘
. (25)

Error quaternion estimation:

Δ𝑞
𝑘
=

1

√(1 + Δ𝑔
𝑇

𝑘
Δ𝑔
𝑘
)

[
Δ𝑔
𝑘

1
] . (26)

Attitude estimations:
𝑞
𝑘
= Δ𝑞
𝑘
⊗ 𝑞
𝑘/𝑘−1

,

�̂�
𝑘
= �̂�
𝑘/𝑘−1

+ Δ�̂�
𝑘
,

(27)

where

Ω
𝑘/𝑘−1

= [
cos (𝜓

𝑘−1
) 𝐼
3
− [𝜙
𝑘−1

×] 𝜙
𝑘−1

−𝜙
𝑘−1

cos (𝜓
𝑘−1

)
] ,

Φ
𝑘/𝑘−1

= 𝐼
6
− [

[�̂�
𝑘−1

×]
1

2
𝐼
3

0
3

0
3

] ⋅ Δ𝑡,

𝜙
𝑘−1

=
sin (𝜓

𝑘−1
) �̂�
𝑘−1

�̂�𝑘−1


, 𝜓
𝑘−1

= 0.5
�̂�𝑘−1

 Δ𝑡,

(28)

where 𝑄
𝑤𝑘

and 𝑄V𝑘 are the covariance matrixes for the
process noise and the vector observation noise, respectively,
and Δ𝑡 is the discretization step size.
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3.2. The Computationally Efficient Attitude Estimator. The
evaluation for the gain matrix in attitude MEKF requires
to calculate the inverse of a 3𝑛 × 3𝑛 matrix, resulting in
heavy computational burden when 𝑛 is large, especially for
small spacecraft with limited computational source. A com-
putationally efficient attitude MEKF based on the reduced
vector observationmodel (RMEKF) is developed to solve this
problem [13, 17].

According to Cayley transformation, the attitude matrix
𝑅 can be mapped to a minimum-element attitude parameter-
ization, expressed by the skew symmetric Rodrigues matrix
𝐺 [18]:

𝑅 = (𝐼
3
− 𝐺) (𝐼

3
+ 𝐺)
−1

= (𝐼
3
+ 𝐺)
−1

(𝐼
3
− 𝐺) , (29)

and the inverse transformation is expressed as follows:

𝐺 = (𝐼
3
− 𝑅) (𝐼

3
+ 𝑅)
−1

= (𝐼
3
+ 𝑅)
−1

(𝐼
3
− 𝑅) , (30)

where 𝐺 is the skew symmetric matrix generated from the
RPs 𝑔: 𝐺 = [𝑔×].

Equation (6) can be rewritten as

𝑟
𝑗

𝑏
= 𝑅 (𝑞) 𝑟

𝑗

𝑖
+ V𝑗 = 𝛿𝑅𝑅 (𝑞) 𝑟

𝑗

𝑖
+ V𝑗 = 𝛿𝑅𝑟

𝑗

𝑏
+ V𝑗. (31)

Substitute the second term of (29) into the above equa-
tion; one can obtain the following equation:

𝑟
𝑗

𝑏
− 𝑟
𝑗

𝑏
= [(𝑟
𝑗

𝑏
+ 𝑟
𝑗

𝑏
) ×] 𝛿𝑔 + V𝑗

1
, (32)

where V𝑗
1
= (𝐼
3
+ [𝛿𝑔×])V𝑗. Then, the observation model can

be expressed as

𝛿𝑟
𝑏
= 𝐻
1
𝛿𝑔 + V

1
, (33)

where

𝐻
1
=

[
[
[
[
[
[
[
[
[

[

ℎ
1

...
ℎ
𝑗

...
ℎ
𝑛

]
]
]
]
]
]
]
]
]

]

, V
1
=

[
[
[
[
[
[
[

[

V1
...
V𝑗
...
V𝑛

]
]
]
]
]
]
]

]

, (34)

where ℎ
𝑗

= [(𝑟
𝑗

𝑏
+ 𝑟
𝑗

𝑏
)×], 𝑗 = 1, . . . , 𝑛.

In order to reduce the computational cost of attitude
MEKF, the dimension of the observationmodel equation (33)
can be reduced to 3 by multiplying both sides of the equation
by 𝐻𝑇
1
[13, 17]. The weighted factor is firstly designed on the

bias of the information conservation principle, to ensure the
information for each vector observation without losing after
the dimension of the observation model reduced to 3. The
weighted factor is designed as

𝑤
𝑗
= √𝑄V𝑡(𝑄

𝑗

V)
−1

, (35)

where 𝑄V𝑡 = [∑
𝑛

𝑗=1
(𝑄
𝑗

V)
−1

]

−1

. Then, (33) can be rewritten in
the following form:

𝛿𝑟


𝑏
= 𝐻
2
𝛿𝑔 + V

2
, (36)

where

𝛿𝑟


𝑏
=

[
[
[
[
[
[
[

[

𝑤
1
𝛿𝑟
1

𝑏

...
𝑤
𝑗
𝛿𝑟
𝑗

𝑏

...
𝑤
𝑛
𝛿𝑟
𝑛

𝑏

]
]
]
]
]
]
]

]

, 𝐻
2
=

[
[
[
[
[
[
[
[
[

[

𝑤
1
ℎ
1

...
𝑤
𝑗
ℎ
𝑗

...
𝑤
𝑛
ℎ
𝑛

]
]
]
]
]
]
]
]
]

]

, V
2
=

[
[
[
[
[
[
[

[

𝑤
1V1
1

...
𝑤
𝑗V𝑗
1

...
𝑤
𝑛V𝑛
1

]
]
]
]
]
]
]

]

.

(37)

Multiply both sides of the above equation by𝐻𝑇
2
, one can get

𝛿𝑍 = 𝐻𝛿𝑥 + V, (38)

where

𝛿𝑍 = 𝐻
𝑇

2
𝛿𝑟


𝑏
, 𝐻 = [𝐻

1
0
3
] , 𝐻

1
= 𝐻
𝑇

2
𝐻
2
,

V = 𝐻
𝑇

2
V
2
.

(39)

The local attitude estimation error system is composed of
(16) and (38). It is obvious that the dimension of the vector
observation model described by the above equation is 3. It
only requires evaluating a 3 × 3 matrix inversion for the
gain matrix 𝐾

𝑘
in the MEKF, rather than the 3𝑛 × 3𝑛 matrix

inversion. As a result, the computational burden is reduced.
According to the MEKF, it is easy to get the following

implementation of the RMEKF [13, 17].The equations for atti-
tude predictions, error attitude estimations, and estimations
are the same in the RMEKF andMEKF. For the above reason,
only the equations for local error attitude estimations in the
RMEKF are shown here.

Local error attitude estimations:

Δ𝑥
𝑘
= 𝐾
𝑘
Δ𝑍
𝑘
. (40)

Gain matrix:

𝐾
𝑘
= [

𝑝
11

𝑘/𝑘−1

𝑝
12

𝑘/𝑘−1

] (𝐻
1𝑘
𝑝
11

𝑘/𝑘−1
+ 𝑄V𝑡)

−1

. (41)

Covariance matrix

𝑃
𝑘
= (𝐼
6
− 𝐾
𝑘
𝐻
𝑘
) 𝑃
𝑘/𝑘−1

(𝐼
6
− 𝐾
𝑘
𝐻
𝑘
)
𝑇

+ 𝐾
𝑘
𝐻
1𝑘
𝑄V𝑡𝐾
𝑇

𝑘
,

(42)

where 𝑝11
𝑘/𝑘−1

and 𝑝12
𝑘/𝑘−1

are the 3 × 3 submatrices of 𝑃
𝑘/𝑘−1

,
namely,

𝑃
𝑘/𝑘−1

= [
𝑝
11

𝑘/𝑘−1
𝑝
12

𝑘/𝑘−1

𝑝
12

𝑘/𝑘−1
𝑝
22

𝑘/𝑘−1

] , (43)

and the matrices Δ𝑍
𝑘
and𝐻

1𝑘
are expressed as follows:

Δ𝑍
𝑘
=

𝑛

∑

𝑗=1

𝑇
𝑗

𝑘
× 𝑆
𝑗

𝑘
,

𝐻
1𝑘
= 𝑡𝑟(

𝑛

∑

𝑗=1

𝑆
𝑗

𝑘
(𝑆
𝑗

𝑘
)
𝑇

)𝐼
3
−

𝑛

∑

𝑗=1

𝑆
𝑗

𝑘
(𝑆
𝑗

𝑘
)
𝑇

,

𝑆
𝑗

𝑘
= 𝑤
𝑗
(𝑟
𝑗

𝑏𝑘
+ 𝑟
𝑗

𝑏𝑘
) , 𝑇

𝑗

𝑘
= 𝑤
𝑗
(𝑟
𝑗

𝑏𝑘
− 𝑟
𝑗

𝑏𝑘
) .

(44)
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3.3. The Improved Computationally Efficient Attitude Esti-
mator. A 3-dimension vector observation model is used in
attitude RMEKF instead of the original 3𝑛-dimensionmodel.
Only the calculation of a 3 × 3 matrix inversion is required
for the gainmatrix, resulting inmuch less computational cost
than that of attitude MEKF. However, the Jacobian matrixes
need to update online in attitude RMEKF too, and the process
of the matrix inversion remains in the calculation for the
gain matrix. In order to further reduce the computational
burden of attitude EKF, a new attitude estimation strategy is
developed in this section.

The local attitude error estimation system composed of
(16) and (18) is rewritten as follows:

𝛿�̇� = 𝑓
1
(𝑝) 𝛿𝑥 + 𝐵𝑛

𝑛
,

𝛿𝑟
𝑏
= 𝑓
2
(𝑝) 𝛿𝑥 + 𝐷𝑛

𝑛
,

(45)

where

𝑓
1
(𝑝) = −[

[�̂�×]
1

2
𝐼
3

0
3

0
3

] , 𝑛
𝑛
= [

𝑛
𝑤

V ] ,

𝑓
2
(𝑝) = 𝐻, 𝑝 = [�̂�

𝑇
𝑞
𝑇
]
𝑇

,

𝐵 = [𝐼6 0
6×3𝑛] , 𝐷 = [03𝑛×6 𝐼

3𝑛] .

(46)

It is assumed that the process noise 𝑛
𝑤
and the measure-

ment noise V are uncorrelated white noise. The parameter 𝑝
is bounded by the 6-dimension space and the value set of 𝑝
belongs to a compact set, since the angular velocity varies in a
finite interval inmost practical applications and each element
of attitude quaternion takes value on the interval [0, 1]. That
is to say, 𝑝 ∈ Ω ⊂ R6 andΩ is a compact set.

Denote

𝐹 (𝑝) = [
𝑓
1
(𝑝) 𝐵

𝑓
2
(𝑝) 𝐷

] . (47)

Then, the above equation can be approximated as a convex
combination of the 𝑙 constant linear system matrixes 𝐹

𝑖
, 𝑖 =

1, . . . , 𝑙 [19], namely,

𝐹 (𝑝) ≈ [
𝐴 𝐵

𝐶 𝐷
] =

𝑙

∑

𝑖=1

𝜆
𝑖
(𝑝) [

𝐴
𝑖
𝐵

𝐶
𝑖
𝐷
] , (48)

where 𝜆
𝑖
(𝑝) is the bias of the convex combination, which

satisfies∑𝑙
𝑖=1

𝜆
𝑖
(𝑝) = 1, 0 ≤ 𝜆

𝑖
(𝑝) ≤ 1.Thus, the local attitude

estimation error system equation (45) can be described with
the following form:

𝛿�̇� = 𝐴𝛿𝑥 + 𝐵𝑛
𝑛
,

𝛿𝑟
𝑏
= 𝐶𝛿𝑥 + 𝐷𝑛

𝑛
,

(49)

where the systemmatrixes𝐴,𝐵,𝐶, and𝐷 are denoted as (48).
The equivalent discrete-time form of (49) can be approx-

imated as

Δ𝑥
𝑘
= 𝐴 (𝑡

𝑘
, 𝑡
𝑘−1

) Δ𝑥
𝑘−1

+ 𝐵𝑛
𝑛,𝑘
,

Δ𝑟
𝑏𝑘
= 𝐶Δ𝑥

𝑘
+ 𝐷𝑛
𝑛,𝑘
,

(50)

where 𝑛
𝑛,𝑘

is the equivalent discrete-time noise

𝑛
𝑛,𝑘

= [
𝑛
𝑤,𝑘

V
𝑘

] , 𝑛
𝑤,𝑘

= ∫

𝑡𝑘

𝑡𝑘−1

𝐴 (𝑡
𝑘
, 𝜏) 𝑛
𝑤
(𝜏) 𝑑𝜏. (51)

The state transition matrix can be approximated by

𝐴 (𝑡
𝑘
, 𝑡
𝑘−1

)& = 𝐼
6
+ 𝐴 ⋅ Δ𝑡 = 𝐼

6
+ (

𝑙

∑

𝑖=1

𝜆
𝑖
(𝑝)𝐴

𝑖
) ⋅ Δ𝑡.

(52)

Since 𝜆
𝑖
(𝑝) satisfies ∑𝑙

𝑖=1
𝜆
𝑖
(𝑝) = 1, 0 ≤ 𝜆

𝑖
(𝑝) ≤ 1, the above

equation can be easily reexpressed as

𝐴 (𝑡
𝑘
, 𝑡
𝑘−1

) =

𝑙

∑

𝑖=1

𝜆
𝑖
(𝑝) (𝐼

6
+ 𝐴
𝑖
⋅ Δ𝑡) . (53)

For convenience of notation, let

𝐴 = 𝐴 (𝑡
𝑘
, 𝑡
𝑘−1

) , 𝐴
𝑖
= 𝐼
6
+ 𝐴
𝑖
; (54)

then (53) can be rewritten as

𝐴 =

𝑙

∑

𝑖=1

𝜆
𝑖
(𝑝)𝐴
𝑖
. (55)

It is now a straightforward matter to show that the
discrete-time form of the local attitude error estimation
system can be described by an uncertain discrete linear
polytopic model in the form of (50). With this model, the
local error attitude estimation problem is converted to a
robust linear one, that is to find a stable local error attitude
estimator in the form

Δ𝑥
𝑘
= 𝐶
𝐹
Δ𝑥
𝑚𝑘

+ 𝐷
𝐹
Δ𝑟
𝑏𝑘
,

Δ𝑥
𝑚𝑘+1

= 𝐴
𝐹
Δ𝑥
𝑚𝑘

+ 𝐵
𝐹
Δ𝑟
𝑏𝑘
,

(56)

such that the local attitude estimation error variance,
𝐸[(Δ𝑥

𝑘
− Δ𝑥
𝑘
)
𝑇
(Δ𝑥
𝑘
− Δ𝑥

𝑘
)], is minimized, where (𝐴

𝐹

, 𝐵
𝐹
, 𝐶
𝐹
, 𝐷
𝐹
) are constantmatrixes to be determined. Accord-

ing to the robust 𝐻
2
filtering algorithm given by Duan et al.

[19], thematrixes (𝐴
𝐹
, 𝐵
𝐹
, 𝐶
𝐹
, 𝐷
𝐹
) can be obtained by solving

an optimization given in the following Lemma.

Lemma 1 (see [19]). Consider the system (50); a filter of
the form (56) that achieves a suboptimal guaranteed filtering
error covariance bound can be derived from the following
optimization:
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Table 1: The improved computationally efficient attitude estimator.

Initialization Step 1. Determine the vertexes of the polytopic linear model described as (50).
Step 2. Search for optimal solutions (𝐺

2
, 𝑆
𝐴
, 𝑆
𝐵
, 𝑆
𝐶
, 𝑆
𝐷
) of LMIs (57); then calculate the constant filter

coefficients (𝐴
𝐹
, 𝐵
𝐹
, 𝐶
𝐹
, 𝐷
𝐹
) for the local attitude estimator by (59).

Estimator (one cycle)

Given 𝑞
𝑘−1

, �̂�
𝑘−1

, �̂�
𝑘−1

and measurements 𝑢
𝑘
, 𝑟
𝑏𝑘
, one has the following.

Step 1. Compute the attitude predictions 𝑞
𝑘/𝑘−1

and �̂�
𝑘/𝑘−1

by (20).
Step 2. Compute measurement prediction errors Δ𝑟

𝑏𝑘
by (21).

Step 3. Compute the local error attitude estimation Δ𝑥
𝑘
by (50).

Step 4. Update the attitude estimations 𝑞
𝑘
and �̂�
𝑘
by (26) and (27).

Step 5. Update the angular velocity estimation: �̂�
𝑘
= 𝑢
𝑘
− �̂�
𝑘
.

min
𝐺11 ,𝐺21 ,𝐺2,𝐹11 ,𝐹21,𝑆𝐴,

𝑆𝐵,𝑆𝐶,𝑆𝐷,𝑃11𝑖 ,𝑃12𝑖 ,𝑃22𝑖

trace (𝑃
𝑥
)

s.t.

[
[
[
[
[
[
[

[

𝐺
11
+ 𝐺
𝑇

11
− 𝑃
11𝑖

𝐺
2
+ 𝐺
𝑇

21
− 𝑃
12𝑖

𝜓
1𝑖

∗ 𝐺
2
+ 𝐺
𝑇

2
− 𝑃
22𝑖

𝜓
2𝑖

∗ ∗ 𝜓
3𝑖

∗ ∗ ∗

∗ ∗ ∗

𝑆
𝐴
− 𝐹
𝑇

21
𝐺
11
𝐵 + 𝑆
𝐵
𝐷

𝑆
𝐴
− 𝛼
2
𝐺
𝑇

2
𝐺
21
𝐵 + 𝑆
𝐵
𝐷

𝜓
4𝑖

−𝐹
11
𝐵 − 𝛼
1
𝑆
𝐵
𝐷

𝑃
22𝑖

− 𝛼
2
𝑆
𝐴
− 𝛼
2
𝑆
𝑇

𝐴
−𝐹
21
𝐵 − 𝛼
2
𝑆
𝐵
𝐷

∗ 𝐼
3𝑛+6

]
]
]
]
]
]
]

]

> 0,

[
[
[

[

𝑃
𝑥
𝐼
6
− 𝑆
𝐷
𝐶
𝑖
−𝑆
𝐶

−𝑆
𝐷
𝐷

∗ 𝑃
11𝑖

𝑃
12𝑖

0
6×(3𝑛+6)

∗ ∗ 𝑃
22𝑖

0
6×(3𝑛+6)

∗ ∗ ∗ 𝐼
3𝑛+6

]
]
]

]

> 0, 𝑖 = 1, 2, . . . , 𝑙,

(57)

where 𝛼
1
and 𝛼

2
are fixed parameters, and

𝜓
1𝑖
= 𝐺
11
𝐴
𝑖
+ 𝑆
𝐵
𝐶
𝑖
− 𝐹
𝑇

11
,

𝜓
2𝑖
= 𝐺
21
𝐴
𝑖
+ 𝑆
𝐵
𝐶
𝑖
− 𝛼
1
𝐺
𝑇

2
,

𝜓
3𝑖
= 𝑃
11𝑖

− 𝐹
11
𝐴
𝑖
− 𝛼
1
𝑆
𝐵
𝐶
𝑖
− 𝐴
𝑇

𝑖
𝐹
𝑇

11
− 𝛼
1
𝐶
𝑇

𝑖
𝑆
𝑇

𝐵
,

𝜓
4𝑖
= 𝑃
12𝑖

− 𝛼
1
𝑆
𝐴
− 𝐴
𝑇

𝑖
𝐹
𝑇

21
− 𝛼
2
𝐶
𝑇

𝑖
𝑆
𝑇

𝐵
.

(58)

The suboptimal filter is given by

𝐴
𝐹
= 𝐺
−1

2
𝑆
𝐴
, 𝐵

𝐹
= 𝐺
−1

2
𝑆
𝐵
, 𝐶

𝐹
= 𝑆
𝐶
, 𝐷

𝐹
= 𝑆
𝐷
.

(59)

As a consequence, the improved computationally efficient
attitude estimator can be presented as shown in Table 1.

The filter coefficients (𝐴
𝐹
, 𝐵
𝐹
, 𝐶
𝐹
, 𝐷
𝐹
) for the local error

attitude estimator can be solved before the recursive process
of the attitude estimation. Since they are constant, the matrix
inversion is not required for the gainmatrix and the updating
of the Jacobian matrixes online neither. As a result, the
computational complexity of the proposed efficient attitude
estimator (PEF) reduces extensively. As can be seen in the
above attitude estimation strategy, the key to implement the
PEF is to determine the vertexes of the polytopic linear

model (49). There are two kinds of methods: parameter
boundary method and TP model transformation method
[20]. The polytopic linear model for an affine parameter
system obtained by the former is quite accurate, but, for other
systems, the polytopic linear model obtained by the latter
is with less conservativeness. The TP model transformation
algorithm is described in Algorithm 1.

4. Simulation Results

In this section, the comparisons of the computational cost
and the accuracy between the PEF and other attitude estima-
tors are given.

4.1. Computational Complexity. The computer complexity of
the attitudes PEF, RMEKF, and MEKF is shown in Table 2.
Only the computational cost of the local error attitude esti-
mation is given since the equations of the attitude predictions
and updatings are the same in the three attitude filters.

According to the statistics, it is obvious to find that the
computational cost of the MEKF is much more than that of
the other two filters.The additional cost of the PEF is less than
that of the RMEKF if 𝑛 < 28, while the multiplicational cost
of the RMEKF is much more than that of the PEF if 𝑛 ≤ 70.
It happens that in a realistic situation the observation vector
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Step 1. Determine the bounded domain Ω where the parameter 𝑝 varying on;
Step 2. Set the transformation spaceΩ into𝑁 uniformly distributed grid:Ω = [𝑎

1
, 𝑏
1
] × ⋅ ⋅ ⋅ × [𝑎

𝑁
, 𝑏
𝑁
];

Step 3. Sample the functions 𝐹(𝑝) over the hyper rectangular grid and store the sample
matrixes in the tensor F;
Step 4. Execute the higher order singular value decomposition (HOSVD) on tensor F and
extract the minimal basis, the result of this step is F ≈ V ⊗

𝑚
𝑈
𝑚
;

Step 5. Normalize the basis matrix 𝑈
𝑚
, one can obtain 𝐹(𝑝) ≈ V ⊗

𝑚
𝑈
𝑚
;

Step 6. Extract the vertexes of the polytopic linear model (49) from V.

Algorithm 1: TP model transformation algorithm [20].

Table 2: The statistics of the computational cost for three filters.

Operation PEF RMEKF MEKF
Addition 39𝑛 + 60 16𝑛 + 726 45𝑛

3
+ 148.5𝑛

2
+ 380.5𝑛 + 750

Multiplicationa
36𝑛 + 72 24𝑛 + 922 45𝑛

3
+ 193.5𝑛

2
+ 449.5𝑛 + 864

aThe matrix inversions in MEKF and RMEKF are calculated by QR decomposition method.
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Figure 1: Error of computational cost.

number is less than 28; therefore, one can get the conclusion
that the PEF has the least computational cost in the three
attitude filters and the MEKF has the most.

Denote the computational cost error between the PEF and
other attitude filters as

Δ𝐶 = 𝐶
𝐹
− 𝐶PEF, (60)

where 𝐶PEF and 𝐶𝐹 are the computational cost of the multi-
plication or addition for the PEF and other filters (MEKF or
RMEKF), respectively.

The computational cost error for the MEKF and PEF is
shown in Figure 1.The increasing rates of themultiplicational
cost error and the additional cost error are nearly the same for
the two filters. They both increase rapidly as the observation
vector number increases, indicating that the computational
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Figure 2: Error of computational cost.

complexity of the PEF is much less than theMEKF, especially
when the observation vector number is large.

The computational cost errors for the RMEKF and PEF
are shown in Figure 2. The advantage of less computation
complexity is not evident as the observation vector number
increases in the PEF, while the decrescent rate of the multi-
plicational cost error for the two filters reduces more slowly
than that of the additional cost error. Since the multiplication
is muchmore complex than the addition, it can be concluded
that the computational burden of the PEF reducesmuchmore
than the other two filters for the application of spacecraft
attitude estimation in the practical engineering.

4.2. Accuracy Comparison. The initial angular velocity
vector and the 3-1-2 Euler angles are given by
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Figure 3: The diagrammatic representation of the attitude estimation system.
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Figure 4: Estimation errors with 3𝜎 bounds in the attitude PEF.

[0.05 −0.1 0.05]
𝑇 deg/s and [45 60 32]

𝑇 deg, respectively.
The initial gyro drift rate is 5 deg/h and the standard
covariance of the driven noise is 0.003 deg/√h. The standard
covariances of the gyro measurement noise and the vector
observation noise are 0.5 deg/h and 5 arcsec, respectively.
The initial covariance of attitude estimation error is 10−8𝐼

6

and the discretization step size is 200ms. The initial attitude
estimations are set as their true values, avoiding the poor
performance or divergence of the three estimators caused by
lacking a good a priori estimate of attitude.

The diagrammatic representation of the attitude esti-
mation system (attitude PEF or the other two estimators)
designed in the simulation is shown in Figure 3; the attitude
estimations are given by the attitude estimator (attitude PEF
or the other attitude estimators) based on the gyro and the
vector observations. The observation vectors can be given by
unit sun, star, and Earth’s magnetic field vectors. Two unit
star vectors are chosen in the simulation, because several star
vector observations can be obtained from the star tracker
at a time. The Monte Carlo simulation is computed over
an ensemble of 100 independent runs. In order to make
the simulation results more intuitive, the attitude estimation
errors are shown by the error attitude 3-1-2 Euler angles
instead of quaternion, because the quaternion does not have
intuitive physical meanings.

The average estimation errors of the attitude and the gyro
drift rate bias with their respective 3𝜎 bounds in the PEF are
shown in Figure 4. As can be seen in the figure, the estimation
errors of the attitude and gyro drift rate bias in the PEF all
converge towithin their respective 3𝜎, indicating that the PEF
performs well for the attitude estimation.

The attitude principal rotation angle is used to scale the
attitude estimation error, which is expressed in the form of
quaternion as follows:

Δ𝜃 = 2arccos (Δ𝑞
4
) . (61)

The average initial attitude estimation errors of the three
filters are shown in Figure 5. The maximal estimation error
of the attitude angle is the smallest in the PEF during the
transient process of the filters. The initial attitude estimation
errors in the RMEKF and MEKF are nearly identical.

The steady attitude estimation errors of attitudes PEF and
MEKF are given in Figure 6. The steady attitude estimation
error in attitude RMEKF is not shown here, because it is
nearly the same as that in attitude MEKF. From the figure,
one can get that the steady attitude error angle in attitude PEF
varies around 4.13 arcsec, while it varies around 1.41 arcsec
in attitude MEKF. The magnitude order of the accuracy
achieved by attitude PEF is 1 arcsec and it is identical to that
of attitude MEKF.
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Table 3: The maximum absolute steady estimation errors.

Δ𝜔 (10
−4 deg/s) Δ𝑏 (10
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𝑥

Δ𝜔
𝑦

Δ𝜔
𝑧

Δ𝑏
𝑥

Δ𝑏
𝑦

Δ𝑏
𝑧

PEF 1.904 1.971 1.789 3.826 4.458 2.858

MEKF 1.897 1.963 1.852 2.320 2.789 2.179
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Figure 5: Initial attitude angle estimation errors.

The maximum values of the absolute steady estimation
errors for the triaxial angular velocities and gyro drift rate
bias are shown in Table 3. The magnitude order of the steady
estimation errors for the triaxial angular velocities and gyro
drift rate bias are 10−4 deg/s and 10

−6 deg/s in attitude PEF,
respectively. They are nearly identical to those of attitude
MEKF. Therefore, one can conclude that the proposed atti-
tude PEF performs well for the spacecraft attitude estimation.
Since its computational cost is much lower than that of
the MEKF and RMEKF, it should be a good choice for
the spacecraft attitude estimation application with limited
computing resources and low accuracy demand.

5. Conclusion

This paper develops a computationally efficient attitude
estimation method for the spacecraft based on the gyro mea-
surements and the vector observations. The global attitude is
described by the quaternion, while the local attitude error is
represented by the Rodrigues parameter to ensure that the
quaternion satisfies the normalization constraint. Rather than
reducing the computational complexity of attitude estimator
by reducing the number of the sigma points or the measure-
ment model dimension, the local error attitude estimator is
designed with constant coefficients in the proposed attitude
estimator. It does not need to calculate the matrix inversion
for gainmatrix or update the Jacobianmatrixes online during
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Figure 6: Steady attitude angle estimation errors.

the recursive process of the attitude estimator. As a result, the
computational cost reduces extensively and the convergence
speed for the attitude ismuch faster than other attitude filters.
Simulation results show that the proposed attitude estimator
improves the computational efficiency, though the accuracy
for the attitude is a little larger than that ofMEKF. It should be
preferred over the MEKF in the practical spacecraft attitude
estimation application with limited computing resources and
low accuracy demand.

Nomenclature

𝑞: Attitude quaternion
⃗𝑞: The vector item of the attitude

quaternion
𝑞
4
: The scalar item of the attitude

quaternion
⃗𝑒: Principal rotation axis
𝜃: Principal rotation angle
𝜔: Angular velocity
𝑏: Gyro drift rate
𝑢: Measurement of the gyro
𝑟
𝑖
, 𝑟
𝑏
: Known reference vector and the

observation vector
𝛿𝑞, 𝛿𝜔, 𝛿𝑏, 𝛿𝑔 : Error quaternion, error angular velocity,

error gyro drift rate, and error
Rodrigues parameters

𝐹,𝐻: Jacobian matrixes
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𝑅: Attitude matrix
𝑛
𝑏
, 𝑛
𝑔
: Gyro drift driven noise and gyro

measurement noise
𝑛
𝑤
, V: Process and measurement noise

𝑛
𝑛,𝑘
: The equivalent discrete-time noise

Δ𝑡: Discretization step size
𝑞, �̂�, �̂�: Estimations of quaternion, angular

velocity, and gyro drift rate
𝐾
𝑘
: Gain matrix in the MEKF

𝑃
𝑘/𝑘−1

, 𝑃
𝑘
: Covariance matrixes for predicted and

estimated attitude error
𝑄
𝑤𝑘
, 𝑄V𝑘: Covariance matrixes for the process and

measurement noise
𝑆
𝑗

𝑘
, 𝑇
𝑗

𝑘
: jth weighted observation vectors used in

the RMEKF
Δ𝑍
𝑘
: Predicted measurement error in RMEKF

at the moment 𝑘
Δ𝑥
𝑘
: Local error attitude estimation at the

moment 𝑘
Δ𝑥
𝑚𝑘
: Middle variable quantity used for solving

Δ𝑥
𝑘

𝑙: Total number of the polytopic vertices
𝑛: Total number of the observation vectors
𝑝: Parameter in the system matrix of the

polytopic model
𝐴: System matrix of the discrete polytopic

model
𝐴, 𝐵, 𝐶,𝐷: System matrixes of the continues

polytopic model
𝐴
𝑖
, 𝐶
𝑖
, 𝐴
𝑖
: Polytopic vertices

F,V,V: Tensors used in the TP model
transformation algorithm

𝐴
𝐹
, 𝐵
𝐹
: Filter coefficients of the local error attitude

estimator
𝐶
𝐹
, 𝐷
𝐹
: Filter coefficients of the local error attitude

estimator
𝑆
𝐴
, 𝑆
𝐵
, 𝑆
𝐶
: Matrix variables in the optimization

𝑆
𝐷
, 𝐺
11
, 𝐺
21
: Matrix variables in the optimization

𝐺
2
, 𝐹
11
, 𝐹
21
: Matrix variables in the optimization

𝑃
11𝑖
, 𝑃
12𝑖
, 𝑃
22𝑖
: Matrix variables in the optimization

R6: The space of 6 dimensional vectors with
real components.
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