1,733 research outputs found

    A Bayesian Framework to Constrain the Photon Mass with a Catalog of Fast Radio Bursts

    Full text link
    A hypothetical photon mass, mγm_\gamma, gives an energy-dependent light speed in a Lorentz-invariant theory. Such a modification causes an additional time delay between photons of different energies when they travel through a fixed distance. Fast radio bursts (FRBs), with their short time duration and cosmological propagation distance, are excellent astrophysical objects to constrain mγm_\gamma. Here for the first time we develop a Bayesian framework to study this problem with a catalog of FRBs. Those FRBs with and without redshift measurement are both useful in this framework, and can be combined in a Bayesian way. A catalog of 21 FRBs (including 20 FRBs without redshift measurement, and one, FRB 121102, with a measured redshift z=0.19273±0.00008z=0.19273 \pm 0.00008) give a combined limit mγ8.7×1051kgm_\gamma \leq 8.7 \times 10^{-51}\, {\rm kg}, or equivalently mγ4.9×1015eV/c2m_\gamma \leq 4.9 \times 10^{-15}\, {\rm eV}/c^2 (mγ1.5×1050kgm_\gamma \leq 1.5\times10^{-50} \, {\rm kg}, or equivalently mγ8.4×1015eV/c2m_\gamma \leq 8.4 \times 10^{-15} \,{\rm eV}/c^2) at 68% (95%) confidence level, which represents the best limit that comes purely from kinematics. The framework proposed here will be valuable when FRBs are observed daily in the future. Increment in the number of FRBs, and refinement in the knowledge about the electron distributions in the Milky Way, the host galaxies of FRBs, and the intergalactic median, will further tighten the constraint.Comment: 10 pages, 6 figures; Physical Review D, in pres

    Minkowski Brane in Asymptotic dS5_5 Spacetime without Fine-tuning

    Full text link
    We discuss properties of a 3-brane in an asymptotic 5-dimensional de-Sitter spacetime. It is found that a Minkowski solution can be obtained without fine-tuning. In the model, the tiny observed positive cosmological constant is interpreted as a curvature of 5-dimensional manifold, but the Minkowski spacetime, where we live, is a natural 3-brane perpendicular to the fifth coordinate axis.Comment: 6 pages, Latex fil

    Saddlepoint approximation for Student's t-statistic with no moment conditions

    Full text link
    A saddlepoint approximation of the Student's t-statistic was derived by Daniels and Young [Biometrika 78 (1991) 169-179] under the very stringent exponential moment condition that requires that the underlying density function go down at least as fast as a Normal density in the tails. This is a severe restriction on the approximation's applicability. In this paper we show that this strong exponential moment restriction can be completely dispensed with, that is, saddlepoint approximation of the Student's t-statistic remains valid without any moment condition. This confirms the folklore that the Student's t-statistic is robust against outliers. The saddlepoint approximation not only provides a very accurate approximation for the Student's t-statistic, but it also can be applied much more widely in statistical inference. As a result, saddlepoint approximations should always be used whenever possible. Some numerical work will be given to illustrate these points.Comment: Published at http://dx.doi.org/10.1214/009053604000000742 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Finite Temperature Phase Diagram in Rotating Bosonic Optical Lattice

    Full text link
    Finite temperature phase boundary between superfluid phase and normal state is analytically derived by studying the stability of normal state in rotating bosonic optical lattice. We also prove that the oscillation behavior of critical hopping matrix directly follows the upper boundary of Hofstadter butterfly as the function of effective magnetic field.Comment: 10 pages, 2 figure

    What Powered the Optical Transient AT2017gfo Associated with GW170817?

    Full text link
    The groundbreaking discovery of the optical transient AT2017gfo associated with GW170817 opens a unique opportunity to study the physics of double neutron star (NS) mergers. We argue that the standard interpretation of AT2017gfo as being powered by radioactive decay of r-process elements faces the challenge of simultaneously accounting for the peak luminosity and peak time of the event, as it is not easy to achieve the required high mass, and especially the low opacity of the ejecta required to fit the data. A plausible solution would be to invoke an additional energy source, which is probably provided by the merger product. We consider energy injection from two types of the merger products: (1) a post-merger black hole powered by fallback accretion; and (2) a long-lived NS remnant. The former case can only account for the early emission of AT2017gfo, with the late emission still powered by radioactive decay. In the latter case, both early- and late-emission components can be well interpreted as due to energy injection from a spinning-down NS, with the required mass and opacity of the ejecta components well consistent with known numerical simulation results. We suggest that there is a strong indication that the merger product of GW170817 is a long-lived (supramassive or even permanently stable), low magnetic field NS. The result provides a stringent constraint on the equations of state of NSs
    corecore