3,605 research outputs found

    Adiabatic quantum state transfer in non-uniform triple-quantum-dot system

    Full text link
    We introduce an adiabatic quantum state transfer scheme in a non-uniform coupled triple-quantum-dot system. By adiabatically varying the external gate voltage applied on the sender and receiver, the electron can be transferred between them with high fidelity. By numerically solving the master equation for a system with always-on interaction, it is indicated that the transfer fidelity depends on the ration between the peak voltage and the maximum coupling constants. The effect of coupling mismatch on the transfer fidelity is also investigated and it is shown that there is a relatively large tolerance range to permit high fidelity quantum state transfer.Comment: 6 pages, 5 figure

    Gamma-ray burst early optical afterglows: implications for the initial Lorentz factor and the central engine

    Full text link
    Early optical afterglows have been observed from GRB 990123, GRB 021004, and GRB 021211, which reveal rich emission features attributed to reverse shocks. It is expected that Swift will discover many more early afterglows. Here we investigate in a unified manner both the forward and the reverse external shock emission components, and introduce a straightforward recipe for directly constraining the initial Lorentz factor of the fireball using early optical afterglow data. The scheme is largely independent of the shock microphysics. We identify two types of combinations of the reverse and forward shock emission, and explore their parameter regimes. We also discuss a possible diagnostic for magnetized ejecta. There is evidence that the central engine of GRB 990123 is strongly magnetized.Comment: emulateapj style, 6 pages, 1 figure. Expanded version accepted for publication in ApJ Part

    Early photon-shock interaction in stellar wind: sub-GeV photon flash and high energy neutrino emission from long GRBs

    Full text link
    For gamma-ray bursts (GRBs) born in a stellar wind, as the reverse shock crosses the ejecta, usually the shocked regions are still precipitated by the prompt MeV \gamma-ray emission. Because of the tight overlapping of the MeV photon flow with the shocked regions, the optical depth for the GeV photons produced in the shocks is very large. These high energy photons are absorbed by the MeV photon flow and generate relativistic e^\pm pairs. These pairs re-scatter the soft X-ray photons from the forward shock as well as the prompt \gamma-ray photons and power detectable high energy emission, significant part of which is in the sub-GeV energy range. Since the total energy contained in the forward shock region and the reverse shock region are comparable, the predicted sub-GeV emission is independent on whether the GRB ejecta are magnetized (in which case the reverse shock IC and synchrotron self-Compton emission is suppressed). As a result, a sub-GeV flash is a generic signature for the GRB wind model, and it should be typically detectable by the future {\em Gamma-Ray Large Area Telescope} (GLAST). Overlapping also influence neutrino emission. Besides the 10^{15} \sim 10^{17} eV neutrino emission powered by the interaction of the shock accelerated protons with the synchrotron photons in both the forward and reverse shock regions, there comes another 101410^{14}eV neutrino emission component powered by protons interacting with the MeV photon flow. This last component has a similar spectrum to the one generated in the internal shock phase, but the typical energy is slightly lower.Comment: 7 pages, accepted for publication in Ap
    corecore