6,659 research outputs found
Molecular-Dynamics Simulation of a Glassy Polymer Melt: Incoherent Scattering Function
We present simulation results for a model polymer melt, consisting of short,
nonentangled chains, in the supercooled state. The analysis focuses on the
monomer dynamics, which is monitored by the incoherent intermediate scattering
function. The scattering function is recorded over six decades in time and for
many different wave-vectors. The lowest temperatures studied are slightly above
the critical temperature of mode-coupling theory (MCT), which was determined
from a quantitative analysis of the beta- and alpha-relaxations. We find
evidence for the space-time factorization theorem in the beta-relaxation
regime, and for the time-temperature superposition principle in the
alpha-regime, if the temperature is not too close to the critical temperature.
The wave-vector dependence of the nonergodicity parameter, of the critical
amplitude, and the alpha-relaxation time are in qualitative agreement with
calculations for hard spheres. For wave-vectors larger than the maximum of the
structure factor the alpha-relaxation time already agrees fairly well with the
asymptotic MCT-prediction. The behavior of the relaxation time at small
wave-vectors can be rationalized by the validity of the Gaussian approximation
and the value of the Kohlrausch stretching exponent.Comment: 23 pages of REVTeX, 13 PostScript figures, submitted to Phys. Rev.
A Monte Carlo study of surface critical phenomena: The special point
We study the special point in the phase diagram of a semi-infinite system,
where the bulk transition is in the three-dimensional Ising universality class.
To this end we perform a finite size scaling study of the improved Blume-Capel
model on the simple cubic lattice with two different types of surface
interactions. In order to check for the effect of leading bulk corrections we
have also simulated the spin-1/2 Ising model on the simple cubic lattice. We
have accurately estimated the surface enhancement coupling at the special point
of these models. We find and for the
surface renormalization group exponents of the special transitions. These
results are compared with previous ones obtained by using field theoretic
methods and Monte Carlo simulations of the spin-1/2 Ising model. Furthermore we
study the behaviour of the surface transition near the special point and
finally we discuss films with special boundary conditions at one surface and
fixed ones at the other.Comment: 21 pages, 2 figures. figure 1 replaced, various typos correcte
Kinetics of Phase Separation in Thin Films: Simulations for the Diffusive Case
We study the diffusion-driven kinetics of phase separation of a symmetric
binary mixture (AB), confined in a thin-film geometry between two parallel
walls. We consider cases where (a) both walls preferentially attract the same
component (A), and (b) one wall attracts A and the other wall attracts B (with
the same strength). We focus on the interplay of phase separation and wetting
at the walls, which is referred to as {\it surface-directed spinodal
decomposition} (SDSD). The formation of SDSD waves at the two surfaces, with
wave-vectors oriented perpendicular to them, often results in a metastable
layered state (also referred to as ``stratified morphology''). This state is
reminiscent of the situation where the thin film is still in the one-phase
region but the surfaces are completely wet, and hence coated with thick wetting
layers. This metastable state decays by spinodal fluctuations and crosses over
to an asymptotic growth regime characterized by the lateral coarsening of
pancake-like domains. These pancakes may or may not be coated by precursors of
wetting layers. We use Langevin simulations to study this crossover and the
growth kinetics in the asymptotic coarsening regime.Comment: 39 pages, 19 figures, submitted to Phys.Rev.
Spin transport in magnetic multilayers
We study by extensive Monte Carlo simulations the transport of itinerant
spins travelling inside a multilayer composed of three ferromagnetic films
antiferromagnetically coupled to each other in a sandwich structure. The two
exterior films interact with the middle one through non magnetic spacers. The
spin model is the Ising one and the in-plane transport is considered. Various
interactions are taken into account. We show that the current of the itinerant
spins going through this system depends strongly on the magnetic ordering of
the multilayer: at temperatures below (above) the transition temperature
, a strong (weak) current is observed. This results in a strong jump of
the resistance across . Moreover, we observe an anomalous variation,
namely a peak, of the spin current in the critical region just above . We
show that this peak is due to the formation of domains in the temperature
region between the low- ordered phase and the true paramagnetic disordered
phase. The existence of such domains is known in the theory of critical
phenomena. The behavior of the resistance obtained here is compared to a recent
experiment. An excellent agreement with our physical interpretation is
observed. We also show and discuss effects of various physical parameters
entering our model such as interaction range, strength of electric and magnetic
fields and magnetic film and non magnetic spacer thicknesses.Comment: 8 pages, 17 figures, submitted to J. Phys.: Cond Matte
Orthorhombic Phase of Crystalline Polyethylene: A Monte Carlo Study
In this paper we present a classical Monte Carlo simulation of the
orthorhombic phase of crystalline polyethylene, using an explicit atom force
field with unconstrained bond lengths and angles and periodic boundary
conditions. We used a recently developed algorithm which apart from standard
Metropolis local moves employs also global moves consisting of displacements of
the center of mass of the whole chains in all three spatial directions as well
as rotations of the chains around an axis parallel to the crystallographic
c-direction. Our simulations are performed in the NpT ensemble, at zero
pressure, and extend over the whole range of temperatures in which the
orthorhombic phase is experimentally known to be stable (10 - 450 K). In order
to investigate the finite-size effects in this extremely anisotropic crystal,
we used different system sizes and different chain lengths, ranging from C_12
to C_96 chains, the total number of atoms in the super-cell being between 432
and 3456. We show here the results for structural parameters, such as the
orthorhombic cell parameters a,b,c, and the setting angle of the chains, as
well as internal parameters of the chains, such as the bond lengths and angles.
Among thermodynamic quantities, we present results for thermal expansion
coefficients, elastic constants and specific heat. We discuss the temperature
dependence of the measured quantities as well as the related finite-size
effects. In case of lattice parameters and thermal expansion coefficients, we
compare our results to those obtained from other theoretical approaches as well
as to some available experimental data. We also suggest some possible ways of
extending this study.Comment: 27 pages, RevTex, 24 figures, submitted to Journal of Chemical
Physic
Monte Carlo simulations reveal the straightening up of an end-grafted flexible chain with a rigid side chain
We have studied the conformational properties of a flexible end-grafted chain
(length ) with a rigid side chain (length ) by means of Monte Carlo
simulations. Depending on the lengths and and the branching site, ,
we observe a considerable straightening of the flexible backbone as quantified
via the gyration tensor. For , i.e. when attaching the side chain to the
free end of the flexible backbone, the effect was strongest
Finite-size scaling at the dynamical transition of the mean-field 10-state Potts glass
We use Monte Carlo simulations to study the static and dynamical properties
of a Potts glass with infinite range Gaussian distributed exchange interactions
for a broad range of temperature and system size up to N=2560 spins. The
results are compatible with a critical divergence of the relaxation time tau at
the theoretically predicted dynamical transition temperature T_D, tau \propto
(T-T_D)^{-\Delta} with Delta \approx 2. For finite N a further power law at
T=T_D is found, tau(T=T_D) \propto N^{z^\star} with z^\star \approx 1.5 and for
T>T_D dynamical finite-size scaling seems to hold. The order parameter
distribution P(q) is qualitatively compatible with the scenario of a first
order glass transition as predicted from one-step replica symmetry breaking
schemes.Comment: 8 pages of Latex, 4 figure
- …