1,476 research outputs found

    Quantacell: Powerful charging of quantum batteries

    Full text link
    We study the problem of charging a quantum battery in finite time. We demonstrate an analytical optimal protocol for the case of a single qubit. Extending this analysis to an array of N qubits, we demonstrate that an N-fold advantage in power per qubit can be achieved when global operations are permitted. The exemplary analytic argument for this quantum advantage in the charging power is backed up by numerical analysis using optimal control techniques. It is demonstrated that the quantum advantage for power holds when, with cyclic operation in mind, initial and final states are required to be separable.Comment: 11 pages, 3 figures, comments welcom

    Absorption Bands of Hydrogen Cyanide Gas in the Near Infrared

    Get PDF
    The absorption spectrum of gaseous hydrogen cyanide has been investigated by photographic methods in the region λ7000-9200. Two weak bands of very simple structure were found, having P and R branches but no Q branches. The band at λ7912 is apparently a harmonic of a fundamental band at 3.04μ, and the very weak band at λ8563 is a combination band. The hydrogen cyanide molecule is linear in the normal state, and has a moment of inertia I=18.79×10^-40 g·cm^2. The distance of separation of the carbon and nitrogen atoms is estimated to be 1.15×10^-8 cm. Hydrogen cyanide is discussed in regard to its three fundamental oscillations which have frequencies 3290, 2090, and 710, respectively, and in regard to its dissociation energy and dissociation products. The evidence requires a molecular structure represented by the formula HCN, and shows that the normal molecule is built from a normal hydrogen atom and a normal CN radical. The absorption of cyanogen gas has also been investigated in the photographic infrared, but no absorption bands could be detected

    Phase transition of a one-dimensional Ising model with distance-dependent connections

    Full text link
    The critical behavior of Ising model on a one-dimensional network, which has long-range connections at distances l>1l>1 with the probability Θ(l)lm\Theta(l)\sim l^{-m}, is studied by using Monte Carlo simulations. Through studying the Ising model on networks with different mm values, this paper discusses the impact of the global correlation, which decays with the increase of mm, on the phase transition of the Ising model. Adding the analysis of the finite-size scaling of the order parameter [][], it is observed that in the whole range of 0<m<20<m<2, a finite-temperature transition exists, and the critical exponents show consistence with mean-field values, which indicates a mean-field nature of the phase transition.Comment: 5 pages,8 figure

    Enhancing the charging power of quantum batteries

    Full text link
    Can collective quantum effects make a difference in a meaningful thermodynamic operation? Focusing on energy storage and batteries, we demonstrate that quantum mechanics can lead to an enhancement in the amount of work deposited per unit time, i.e., the charging power, when NN batteries are charged collectively. We first derive analytic upper bounds for the collective \emph{quantum advantage} in charging power for two choices of constraints on the charging Hamiltonian. We then highlight the importance of entanglement by proving that the quantum advantage vanishes when the collective state of the batteries is restricted to be in the separable ball. Finally, we provide an upper bound to the achievable quantum advantage when the interaction order is restricted, i.e., at most kk batteries are interacting. Our result is a fundamental limit on the advantage offered by quantum technologies over their classical counterparts as far as energy deposition is concerned.Comment: In this new updated version Theorem 1 has been changed with Proposition 1. The paper has been published on PRL, and DOI included accordingl

    Governance architectures for inter-organisational R&D collaboration

    Get PDF
    Inter-organizational relationships are becoming an increasingly important source of competitive advantage and innovation. This study looks at these relationships in the context of inter-organizational R&D collaborations in the European automotive industry. Previous work led to the proposal of a competence-based portfolio framework that explains the design of the inter-organizational architecture and an indicative relationship strategy. This framework comprises four distinct types of governance architecture and relationship strategy. This paper reports on the first confirmatory transfer study, conducted at Jaguar Land Rover, in the UK. The study illustrates developmental paths and patterns in the evolution of inter-organizational relationships using empirical insights. Their configuration and dynamic evolution is contingent upon the ‘engageability’ of the partner companies’ competences based on their attractiveness, transferability and maturity. The study shows that the contingency framework is transferable and practically useful, as well as yielding further practical narrative about inter-organizational practice

    Spatial modeling of personalized exposure dynamics: the case of pesticide use in small-scale agricultural production landscapes of the developing world

    Get PDF
    Background: Pesticide poisoning is a global health issue with the largest impacts in the developing countries where residential and small-scale agricultural areas are often integrated and pesticides sprayed manually. To reduce health risks from pesticide exposure approaches for personalized exposure assessment (PEA) are needed. We present a conceptual framework to develop a spatial individual-based model (IBM) prototype for assessing potential exposure of farm-workers conducting small-scale agricultural production, which accounts for a considerable portion of global food crop production. Our approach accounts for dynamics in the contaminant distributions in the environment, as well as patterns of movement and activities performed on an individual level under different safety scenarios. We demonstrate a first prototype using data from a study area in a rural part of Colombia, South America. Results: Different safety scenarios of PEA were run by including weighting schemes for activities performed under different safety conditions. We examined the sensitivity of individual exposure estimates to varying patterns of pesticide application and varying individual patterns of movement. This resulted in a considerable variation in estimates of magnitude, frequency and duration of exposure over the model runs for each individual as well as between individuals. These findings indicate the influence of patterns of pesticide application, individual spatial patterns of movement as well as safety conditions on personalized exposure in the agricultural production landscape that is the focus of our research. Conclusion: This approach represents a conceptual framework for developing individual based models to carry out PEA in small-scale agricultural settings in the developing world based on individual patterns of movement, safety conditions, and dynamic contaminant distributions. The results of our analysis indicate our prototype model is sufficiently sensitive to differentiate and quantify the influence of individual patterns of movement and decision-based pesticide management activities on potential exposure. This approach represents a framework for further understanding the contribution of agricultural pesticide use to exposure in the small-scale agricultural production landscape of many developing countries, and could be useful to evaluate public health intervention strategies to reduce risks to farm-workers and their families. Further research is needed to fully develop an operational version of the model
    corecore