984 research outputs found

    Orbital moment of a single Co atom on a Pt(111) surface - a view from correlated band theory

    Full text link
    The orbital magnetic moment of a Co adatom on a Pt(111) surface is calculated in good agreement with experimental data making use of the LSDA+U method. It is shown that both electron correlation induced orbital polarization and structural relaxation play essential roles in orbital moment formation. The microscopic origins of the orbital moment enhancement are discussed

    Is There Quantum Gravity in Two Dimensions?

    Get PDF
    A hybrid model which allows to interpolate between the (original) Regge approach and dynamical triangulations is introduced. The gained flexibility in the measure is exploited to study dynamical triangulation in a fixed geometry. Our numerical results support KPZ exponents. A critical assessment concerning the apparent lack of gravitational effects in two dimensions follows.Comment: 20 pages including 4 figures, uuencoded Z-compressed .tar file created by uufile

    Phase Separation Kinetics in a Model with Order-Parameter Dependent Mobility

    Full text link
    We present extensive results from 2-dimensional simulations of phase separation kinetics in a model with order-parameter dependent mobility. We find that the time-dependent structure factor exhibits dynamical scaling and the scaling function is numerically indistinguishable from that for the Cahn-Hilliard (CH) equation, even in the limit where surface diffusion is the mechanism for domain growth. This supports the view that the scaling form of the structure factor is "universal" and leads us to question the conventional wisdom that an accurate representation of the scaled structure factor for the CH equation can only be obtained from a theory which correctly models bulk diffusion.Comment: To appear in PRE, figures available on reques

    Molecular Dynamics Simulation Study of Nonconcatenated Ring Polymers in a Melt: I. Statics

    Full text link
    Molecular dynamics simulations were conducted to investigate the structural properties of melts of nonconcatenated ring polymers and compared to melts of linear polymers. The longest rings were composed of N=1600 monomers per chain which corresponds to roughly 57 entanglement lengths for comparable linear polymers. For the rings, the radius of gyration squared was found to scale as N to the 4/5 power for an intermediate regime and N to the 2/3 power for the larger rings indicating an overall conformation of a crumpled globule. However, almost all beads of the rings are "surface beads" interacting with beads of other rings, a result also in agreement with a primitive path analysis performed in the following paper (DOI: 10.1063/1.3587138). Details of the internal conformational properties of the ring and linear polymers as well as their packing are analyzed and compared to current theoretical models.Comment: 15 pages, 14 figure

    Analysis of self--averaging properties in the transport of particles through random media

    Full text link
    We investigate self-averaging properties in the transport of particles through random media. We show rigorously that in the subdiffusive anomalous regime transport coefficients are not self--averaging quantities. These quantities are exactly calculated in the case of directed random walks. In the case of general symmetric random walks a perturbative analysis around the Effective Medium Approximation (EMA) is performed.Comment: 4 pages, RevTeX , No figures, submitted to Physical Review E (Rapid Communication

    Anomalous tag diffusion in the asymmetric exclusion model with particles of arbitrary sizes

    Full text link
    Anomalous behavior of correlation functions of tagged particles are studied in generalizations of the one dimensional asymmetric exclusion problem. In these generalized models the range of the hard-core interactions are changed and the restriction of relative ordering of the particles is partially brocken. The models probing these effects are those of biased diffusion of particles having size S=0,1,2,..., or an effective negative "size" S=-1,-2,..., in units of lattice space. Our numerical simulations show that irrespective of the range of the hard-core potential, as long some relative ordering of particles are kept, we find suitable sliding-tag correlation functions whose fluctuations growth with time anomalously slow (t1/3t^{{1/3}}), when compared with the normal diffusive behavior (t1/2t^{{1/2}}). These results indicate that the critical behavior of these stochastic models are in the Kardar-Parisi-Zhang (KPZ) universality class. Moreover a previous Bethe-ansatz calculation of the dynamical critical exponent zz, for size S≥0S \geq 0 particles is extended to the case S<0S<0 and the KPZ result z=3/2z=3/2 is predicted for all values of S∈ZS \in {Z}.Comment: 4 pages, 3 figure

    Simulation of fluid-solid coexistence in finite volumes: A method to study the properties of wall-attached crystalline nuclei

    Full text link
    The Asakura-Oosawa model for colloid-polymer mixtures is studied by Monte Carlo simulations at densities inside the two-phase coexistence region of fluid and solid. Choosing a geometry where the system is confined between two flat walls, and a wall-colloid potential that leads to incomplete wetting of the crystal at the wall, conditions can be created where a single nanoscopic wall-attached crystalline cluster coexists with fluid in the remainder of the simulation box. Following related ideas that have been useful to study heterogeneous nucleation of liquid droplets at the vapor-liquid coexistence, we estimate the contact angles from observations of the crystalline clusters in thermal equilibrium. We find fair agreement with a prediction based on Young's equation, using estimates of interface and wall tension from the study of flat surfaces. It is shown that the pressure versus density curve of the finite system exhibits a loop, but the pressure maximum signifies the "droplet evaporation-condensation" transition and thus has nothing in common with a van der Waals-like loop. Preparing systems where the packing fraction is deep inside the two-phase coexistence region, the system spontaneously forms a "slab state", with two wall-attached crystalline domains separated by (flat) interfaces from liquid in full equilibrium with the crystal in between; analysis of such states allows a precise estimation of the bulk equilibrium properties at phase coexistence

    Critical phase of a magnetic hard hexagon model on triangular lattice

    Full text link
    We introduce a magnetic hard hexagon model with two-body restrictions for configurations of hard hexagons and investigate its critical behavior by using Monte Carlo simulations and a finite size scaling method for discreate values of activity. It turns out that the restrictions bring about a critical phase which the usual hard hexagon model does not have. An upper and a lower critical value of the discrete activity for the critical phase of the newly proposed model are estimated as 4 and 6, respectively.Comment: 11 pages, 8 Postscript figures, uses revtex.st

    Ground-state behavior of the 3d +/-J random-bond Ising model

    Full text link
    Large numbers of ground states of the three-dimensional ±J\pm J random-bond Ising model are calculated for sizes up to 14314^3 using a combination of a genetic algorithm and Cluster-Exact Approximation. Several quantities are calculated as function of the concentration pp of the antiferromagnetic bonds. The critical concentration where the ferromagnetic order disappears is determined using the Binder cumulant of the magnetization. A value of pc=0.222±0.005p_c=0.222\pm 0.005 is obtained. From the finite-size behavior of the Binder cumulant and the magnetization critical exponents ν=1.1±0.3\nu=1.1 \pm 0.3 and β=0.2±0.1\beta=0.2 \pm 0.1 are calculated.Comment: 8 pages, 11 figures, revte
    • …
    corecore