11 research outputs found

    The prognostic value of long noncoding RNA MEG3 expression in the survival of cancer patients: a meta-analysis

    Get PDF
    Long non-coding RNAs (lncRNAs) play an important role in carcinogenesis and cancer progression. lncRNA MEG3 is a tumor suppressor that is down-regulated in several cancers. However, its prognostic value in human malignancies remains controversial. We have therefore undertaken a meta-analysis to explore the relationship between cancer survival and the expression of long non-coding RNA MEG3. A systematic literature search identified 13 potentially eligible investigations comprising 1733 patients in nine different cancer types. In the pooled analysis, a low expression of MEG3 was associated with a low overall survival (OS) in cancer patients with a combined HR of 0.830 [hazard ratio (HR) =0.83; 95% CI: 0.70–0.98; P=0.0.03; random effect model]. However, sub-group analysis according to cancer type revealed that MEG3 expression was not associated with better OS in gastrointestinal cancer (HR = 0.58, 95% CI = 0.33 to 1.03, P = 0.06) and breast cancer patients (HR = 0.85, 95% CI: 0.12 to 5.88, P = 0.87). In conclusion, our results demonstrate that only in the pooled analysis, there was a significant relationship between MEG3 expression and cancer survival. Further investigation of other molecular biomarkers involved in tumorigenesis-related pathways is necessary

    Green synthesis of nanohydroxyapatite trough Elaeagnus angustifolia L. extract and evaluating its anti-tumor properties in MCF7 breast cancer cell line

    No full text
    Abstract Background One of the most common types of cancer in women is breast cancer. There are numerous natural plant-based products, which exert anti-tumoral effects including Elaeagnus Angustifolia (EA). It modulates cell-cycle process, heat-shock proteins expression, anti-proliferative properties, apoptosis induction, blocking of angiogenesis, and cell invasion inhibition. The current study aimed to synthesize and evaluate the anticancer effects of hydroalcoholic EA extract (HEAE), Nanohydroxyapatite (nHAp) and nHAp synthesized trough EA (nHA-EA) in MCF-7 breast cancer cell line. Methods In the present study, HEAE preparation and green synthesis of nHA-EA was done and phase composition, functional groups, and crystallin phase of nHA-EA and nHAp were determined using Fourier-transform infrared (FTIR) and X-ray diffraction (XRD). The characteristics of synthesized nanoparticles including structural and morphological parameters were investigated using scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) techniques. Then, by using MTT-assay (Dimethylthiazoldiphenyltetrazolium), the in vitro cytotoxic and half maximal inhibitory concentration (IC50) of EA extract, nHAp, and nHA-EA in the MCF-7 breast cancer cell line was evaluated. Next, we assessed the expression of apoptosis-related genes Bax, Bcl2 and p53 using quantitative reverse-transcriptase polymerase-chain-reaction (qRT-PCR) and migration of MCF-7 cells by scratch assay. Results The FTIR results demonstrated formation of nHAp and its interaction with HEAE during synthesis process. The XRD results of the synthesized nanoparticles showed similar XRD pattern of nHA-EA and nHAp and purity of synthesized nanomaterials. The average IC50 of HEAE, nHAp, and nHA-EA extract after treatment of cancer cells for 24 h was 400 ”g/mL, 200 ”g/mL, and 100 ”g/mL, respectively. Our results revealed that nHA-EA significantly reduced the migration and invasion of the MCF-7 cells, in comparison to the nHAp and EA extract. Moreover, level of Bax/Bcl2 and p53 was significantly higher in the nHA-EA extract group in comparison to the EA extract and nHAp group. Conclusion Taken together, our results demonstrated that bioactive constituents of EA medicinal plant in form of nHA-EA particles, can effectively exerts potential anticancer and chemo preventive effect against breast cancer growth and can be proposed as a promising beneficial candidate for BC therapy. However, further investigations are required to discover what bioactive compounds are responsible for the chemo preventive effect of this extract

    Association between adherence to a low carbohydrate dietary (LCD) pattern with breast milk characteristics and oxidative markers in infants’ urine: a cross-sectional study

    No full text
    Abstract Background Breast milk (BM) is a dynamic fluid that varies over time and between women. The variations in BM components are most likely associated with maternal diet quality. This study aimed to assess adherence to a low carbohydrate dietary (LCD) pattern with oxidative stress markers of BM characteristics and infants’ urine. Materials and methods In this cross-sectional study 350 breastfeeding mothers and their infants were recruited. BM samples were collected from mothers, and urine specimens were obtained from each infant. To evaluate LCD scores, subjects were divided into 10 deciles according to the percent of energy obtained from carbohydrates, proteins, and fats. Determination of total antioxidant activity was conducted using the ferric reducing antioxidant power (FRAP), 2, 2â€Č-diphenyl-1-picrylhydrazyl (DPPH), thiobarbituric acid reactive substances (TBARs), and Ellman’s assay. Biochemical assays of samples including calcium, total protein, and triglyceride level were also performed using commercial kits. Results Participants with the greatest LCD pattern adherence were placed into the last quartile (Q4), and those with the minimum LCD were in the first quartile (Q1). Individuals in the highest LCD quartile had significantly higher levels of milk FRAP, thiol, and protein, as well as infant urinary FRAP and lower milk MDA levels than those in the lowest quartile. Multivariate linear regression analyses indicated that higher score of the LCD pattern was associated with a higher level of milk thiol, protein, and lower level of milk MDA (p < 0.05). Conclusion Our findings show that adherence to a LCD, as defined by a low level of carbohydrates in daily food intake, is linked with improved BM quality and markers of oxidative stress in infant urine

    Epigenetic drugs as new emerging therapeutics: What is the scale's orientation of application and challenges?

    No full text
    Epigenetics is the study of heritable changes in gene expression or function without altering the DNA sequence. Important factors are part of epigenetic events, such as methylation, DNA histone rearrangements, nucleosome transposition, and non-coding RNAs. Dysregulated epigenetic mechanics are associated with various cancers' initiation, development, and metastasis. It is known that the occurrence and development of cancer can be controlled by regulating unexpected epigenetic events. Epi-drugs are used singly or in combination with chemotherapy and enhance antitumor activity, reduce drug resistance, and stimulate the host immune response. Despite these benefits, epigenetic therapy as a single therapy or in combination with other drugs leads to adverse effects. This review article introduces and compares the advantages, disadvantages, and side effects of using these drugs for the first time since their introduction. Also, this article describes the mechanism of action of various epigenetic drugs. Recommendations for future use of epigenetic drugs as cancer therapeutics are suggested as an overall conclusion
    corecore