6,421 research outputs found

    Textured Crystallization of Ultrathin Hafnium Oxide Films on Silicon Substrate

    Get PDF
    The effects of rapid thermal annealing are reported here on the structure of 2 nm thick hafnium oxide films grown on silicon (100) substrates. The films grown by atomic layer deposition have a 1 nm SiO2 transition layer between silicon and the HfO2 layer. The amorphous structure of the as-deposited films is retained after annealing at 600°C. The HfO2 films crystallized into an orthorhombic phase with an out-of-plane texture after annealing at 800°C or higher. In contrast, films grown on thick amorphous SiO2 substrates crystallize without any texture. The authors attribute the texture of HfO2 on Si (100) to the role of interfacial SiO2 transition layer

    Direct Observation of Photoinduced Charge Separation in Ruthenium Complex/Ni(OH)\u3csub\u3e2\u3c/sub\u3e Nanoparticle Hybrid

    Get PDF
    Ni(OH)2 have emerged as important functional materials for solar fuel conversion because of their potential as cost-effective bifunctional catalysts for both hydrogen and oxygen evolution reactions. However, their roles as photocatalysts in the photoinduced charge separation (CS) reactions remain unexplored. In this paper, we investigate the CS dynamics of a newly designed hybrid catalyst by integrating a Ru complex with Ni(OH)2 nanoparticles (NPs). Using time resolved X-ray absorption spectroscopy (XTA), we directly observed the formation of the reduced Ni metal site (~60 ps), unambiguously demonstrating CS process in the hybrid through ultrafast electron transfer from Ru complex to Ni(OH)2 NPs. Compared to the ultrafast CS process, the charge recombination in the hybrid is ultraslow (≫50 ns). These results not only suggest the possibility of developing Ni(OH)2 as solar fuel catalysts, but also represent the first time direct observation of efficient CS in a hybrid catalyst using XTA

    Electronic reconstruction at SrMnO3-LaMnO3 superlattice interfaces

    Full text link
    We use resonant soft x-ray scattering to study electronic reconstruction at the interface between the Mott insulator LaMnO3 and the "band" insulator SrMnO3. Superlattices of these two insulators were shown previously to have both ferromagnetism and metallic tendencies [Koida et al., Phys. Rev. B 66, 144418 (2002)]. By studying a judiciously chosen superlattice reflection we show that the interface density of states exhibits a pronounced peak at the Fermi level, similar to that predicted by Okamoto et al. [Phys. Rev. B 70, 241104(R) (2004)]. The intensity of this peak correlates with the conductivity and magnetization, suggesting it is the driver of metallic behavior. Our study demonstrates a general strategy for using RSXS to probe the electronic properties of heterostructure interfaces.Comment: 4.2 pages, 4 figure

    The tunnelling spectra of quasi-free-standing graphene monolayer

    Full text link
    With considering the great success of scanning tunnelling microscopy (STM) studies of graphene in the past few years, it is quite surprising to notice that there is still a fundamental contradiction about the reported tunnelling spectra of quasi-free-standing graphene monolayer. Many groups observed V-shape spectra with linearly vanishing density-of-state (DOS) at the Dirac point, whereas, the others reported spectra with a gap of 60 meV pinned to the Fermi level in the quasi-free-standing graphene monolayer. Here we systematically studied the two contradicted tunnelling spectra of the quasi-free-standing graphene monolayer on several different substrates and provided a consistent interpretation about the result. The gap in the spectra arises from the out-of-plane phonons in graphene, which mix the Dirac electrons at the Brillouin zone corners with the nearly free-electron states at the zone center. Our experiment indicated that interactions with substrates could effectively suppress effects of the out-of-plane phonons in graphene and enable us to detect only the DOS of the Dirac electrons in the spectra. We also show that it is possible to switch on and off the out-of-plane phonons of graphene at the nanoscale, i.e., the tunnelling spectra show switching between the two distinct features, through voltage pulses applied to the STM tip.Comment: 4 Figure

    A CRY-BIC negative-feedback circuitry regulating blue light sensitivity of Arabidopsis.

    Get PDF
    Cryptochromes are blue light receptors that regulate various light responses in plants. Arabidopsis cryptochrome 1 (CRY1) and cryptochrome 2 (CRY2) mediate blue light inhibition of hypocotyl elongation and long-day (LD) promotion of floral initiation. It has been reported recently that two negative regulators of Arabidopsis cryptochromes, Blue light Inhibitors of Cryptochromes 1 and 2 (BIC1 and BIC2), inhibit cryptochrome function by blocking blue light-dependent cryptochrome dimerization. However, it remained unclear how cryptochromes regulate the BIC gene activity. Here we show that cryptochromes mediate light activation of transcription of the BIC genes, by suppressing the activity of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), resulting in activation of the transcription activator ELONGATED HYPOCOTYL 5 (HY5) that is associated with chromatins of the BIC promoters. These results demonstrate a CRY-BIC negative-feedback circuitry that regulates the activity of each other. Surprisingly, phytochromes also mediate light activation of BIC transcription, suggesting a novel photoreceptor co-action mechanism to sustain blue light sensitivity of plants under the broad spectra of solar radiation in nature
    corecore