13,164 research outputs found

    Effective p-wave interaction and topological superfluids in s-wave quantum gases

    Get PDF
    P-wave interaction in cold atoms may give rise to exotic topological superfluids. However, the realization of p-wave interaction in cold atom system is experimentally challenging. Here we propose a simple scheme to synthesize effective pp-wave interaction in conventional ss-wave interacting quantum gases. The key idea is to load atoms into spin-dependent optical lattice potential. Using two concrete examples involving spin-1/2 fermions, we show how the original system can be mapped into a model describing spinless fermions with nearest neighbor p-wave interaction, whose ground state can be a topological superfluid that supports Majorana fermions under proper conditions. Our proposal has the advantage that it does not require spin-orbit coupling or loading atoms onto higher orbitals, which is the key in earlier proposals to synthesize effective pp-wave interaction in ss-wave quantum gases, and may provide a completely new route for realizing pp-wave topological superfluids.Comment: 5 pages, 4 figure

    Signature of the Van der Waals like small-large charged AdS black hole phase transition in quasinormal modes

    Get PDF
    We calculate the quasinormal modes of massless scalar perturbations around small and large four-dimensional Reissner-Nordstrom-Anti de Sitter (RN-AdS) black holes. We find a dramatic change in the slopes of quasinormal frequencies in small and large black holes near the critical point where the Van der Waals like thermodynamic phase transition happens. This further supports that the quasinormal mode can be a dynamic probe of the thermodynamic phase transition.Comment: 20 pages,11 figures.The new version is accepted for publication in JHE
    corecore