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Effective p-wave interaction and topological superfluids in s-wave quantum gases
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p-wave interaction in cold atoms may give rise to exotic topological superfluids. However, the realization of
p-wave interaction in a cold atom system is experimentally challenging. Here we propose a simple scheme to
synthesize effective p-wave interaction in conventional s-wave interacting quantum gases. The key idea is to load
atoms into a spin-dependent optical lattice potential. Using two concrete examples involving spin-1/2 fermions,
we show how the original system can be mapped into a model describing spinless fermions with nearest-neighbor
p-wave interaction, whose ground state can be a topological superfluid that supports Majorana fermions under
proper conditions. Our proposal has the advantage that it does not require spin-orbit coupling or loading atoms
onto higher orbitals, which is the key in earlier proposals to synthesize effective p-wave interaction in s-wave
quantum gases, and may provide a completely new route for realizing p-wave topological superfluids.
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Topological superfluids have attracted tremendous attention
in recent years. They serve as promising candidates to host Ma-
jorana fermions [1–3], which represents one of the most exotic
quasiparticle states and may find applications in fault-tolerant
quantum computing due to their non-Abelian nature. It was
first pointed out by Kitaev that a system of one-dimensional
(1D) spinless fermions with p-wave interaction features a
topologically nontrivial superfluid phase accompanied with
zero-energy Majorana fermion states at boundaries [4–12].
In ultracold atomic systems, strong p-wave interactions have
been realized directly via p-wave Feshbach resonances in 40K
and 6Li [13]. Unfortunately, the p-wave Feshbach resonances
in cold atoms are accompanied by large three-body inelastic
collisional loss [14,15], and as a result, the lifetime of the Fermi
gases is greatly reduced near the p-wave resonances [16,17].

On the other hand, significant progress has been achieved
in synthesizing effective p-wave interactions in conventional
s-wave interacting Fermi gases. The first progress along
this line is based on synthetic spin-orbit coupling in atomic
systems, which is the generalization of the Kitaev model [18].
In an s-wave Fermi gas, Rashba spin-orbit coupling can induce
a spin-triplet pairing and thus create a chiral p-wave superfluid
in a two-dimensional (2D) system [19,20]. However, experi-
mental realization of spin-orbit coupling is accompanied by
the large heating effect induced by the near-resonant Raman
lasers [21–26]. Another advance to engineer effective p-wave
interaction takes advantage of the odd parity due to p-orbital
wave functions of atoms [27–29]. In these works, the Cooper
pair with odd parity can arise by introducing pair hopping
between two s-orbital atoms and one molecule, or the s-wave
interactions between one s- and one p-orbital atom. However,
this requires sophisticated optical lattice setup and demanding
experimental manipulations to put atoms in p orbitals [30].

In this Rapid Communication, different from earlier works,
we propose a very simple scheme for synthesizing p-wave
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superfluids in quantum gases without involving either spin-
orbit coupling or p-orbital atoms. The key ingredient in our
proposal is a spin-dependent optical lattice potential consisting
of two sublattices with spatial offset, and each sublattice traps a
different atomic spin state. This configuration has already been
realized in several cold atom laboratories. As we will show in
detail below, this simple arrangement leads to an effective p-
wave interaction whose strength is directly proportional to the
intrinsic s-wave interaction strength, which can be tuned using
s-wave Feshbach resonances. The simplicity of our proposal
makes it more feasible in experimental realization, and may
open up new avenues for studying topological superfluids and
the associated Majorana fermion states. In the following, we
will illustrate our idea using two concrete examples involving
spin-1/2 fermions in both a 1D and a 2D lattice geometry.

1D lattice model. Our first example concerns a degenerate
Fermi gas with two hyperfine states (or pseudospins denoted
as A and B, respectively) trapped in a 1D optical lattice
potential. Our proposed setup is illustrated in Fig. 1(a). The
lattice potential is spin dependent and takes the form

VA(x) = V0 sin2(kLx), VB(x) = V0 cos2(kLx), (1)

where kL = π/a with the lattice constant a. The recoil energy
is defined as ER = h2/2ma2 and will be chosen as the energy
unit in the following.

Due to the spatial offset of sublattices VA and VB , each
B site sits between two adjacent A sites and vice versa, as
schematically illustrated in Fig. 1(a). We label the lattice sites
such that the j th site of VB is located between the j th and
the (j + 1)th sites of VA. In our proposal, fermions are deeply
trapped in their respective sublattices and tunneling within
each sublattice is negligible. However, the Wannier function
of one sublattice site overlaps with the Wannier function of
its nearest neighbors of the other sublattice. This establishes
an interaction for the atoms trapped in the two sublattices. We
can further induce a tunneling between the two sublattices by
applying a radio-frequency (rf) field that drives a transition
between the A and B states. The Hamiltonian describing our
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FIG. 1. (a) An illustration of the experimental proposal: in the 1D
optical lattice, fermions in hyperfine state A (blue atom clouds) and
B (red atom clouds) experience the same lattice potential, but with
an offset of half a lattice constant with respect to each other. As a
result, each A atom resides in the center of two adjacent B atoms, and
vice versa. The coupling between the two hyperfine states, as shown
by the black solid lines, is induced by an rf field. The atom-atom
interaction, as shown by the green wavy lines, arises from the contact
s-wave interaction between unlike spins. (b) The 1D spinless chain
model after mapping into the new index representation.

lattice system takes the following form:

H =
∑

j

[−t(a†
j bj−1 + a

†
j bj + H.c.) − μ(a†

j aj + b
†
j bj )

+U (a†
j b

†
j bjaj + a

†
j+1b

†
j bj aj+1)], (2)

where μ is the chemical potential, and aj and bj are
annihilation operators of fermions on the j th lattice site in
states A and B, respectively:

t = �

∫
dx W ∗(x − a/2)W (x),

U = g

∫
dx|W (x − a/2) W (x)|2,

(3)

characterize the rf field-induced intersublattice tunneling
amplitude and the interaction between nearest neighbors from
different sublattices, respectively. Here W (x) is the Wannier
function of the lattice potential VA(x) or VB(x), � represents
the rf field strength, and g is the contact s-wave interaction
strength in free space.

To show that this system possesses nontrivial topological
properties, we take the mean-field Bogoliubov–de Gennes
(BdG) approach. Although the BdG theory is not expected
to be quantitatively accurate for 1D fermionic systems, it can
still capture many of the qualitative features, particularly the
topological features of the system which we will focus on in
this study. Here we assume that each sublattice contains L/2
sites, and introduce the superfluid order parameters �2j−1 =
−U 〈bjaj 〉 and �2j = −U 〈aj+1bj 〉. The Hamiltonian (2) can
be diagonalized into the form H = ∑L

η=1(Eηα
†
ηαη − 1

2 ) +
const by employing the BdG transformation
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†
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)
,
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1, . . . ,u
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L)T and v̂η = (vη

1 , . . . ,v
η

L)T satisfying the
following BdG equations:(
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�̂† −ĥ

)(
ûη
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)
= Eη

(
ûη

v̂∗
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, (4)

FIG. 2. (a) BdG quasiparticle excitation energies (in units of
t) for V0 = 9.0ER at the number density n = 0.710 (μ = 1.5t).
Integer η labels the quasiparticle states. The zero-energy states are
twofold degenerate and gapped from the bulk. The left inset shows
the BdG quasiparticle excitation energies at n = 0.995 (μ = 2.5t),
in which zero-energy states are absent. Here we set L = 100 and
U = −6.16t . (b) The spatial distribution of the zero-energy mode in
the sublattice A (blue solid lines) and B (red dashed lines). (c) Ground
state phase diagram for Hamiltonian (2): “TSF/NSF” stands for
the topological/nontopological superfluid state; and “Ins” stands for
the band insulator. The background color represents the magnitude
of the order parameter. U , μ, and � are all shown in units of t .

where En is the excitation energy for the nth quasiparticle
state, and ĥ and �̂ are L × L matrices whose matrix elements
are given by

ĥij = −μδij − t(δj,i−1 + δj,i+1),

�̂ij = −�iδj,i+1 + �i−1δj,i−1,

�j = −U
∑

η

[
u

η

jv
η

j+1�(−Eη) + u
η

j+1v
η

j �(Eη)
]
,

where � is the Heaviside step function which describes the
Fermi-Dirac distribution at zero temperature.

We apply an open boundary condition and solve the
BdG equations (4) self-consistently. In Fig. 2(a), we display
quasiparticle spectrum Eη for two sets of parameters. As one
can see from the spectrum in the main figure, for μ < 2t , inside
the superfluid gap between the positive-energy quasiparticle
states and the negative-energy quasihole states, there exist two
degenerate zero-energy modes that are separated from other
modes by a finite gap. The wave functions of the zero-energy
mode in the sublattices A and B are illustrated in Fig. 2(b).
As one can clearly see, they are well localized at the two ends
of each sublattice chain. For larger atomic filling factor such
that the chemistry potential μ exceeds 2t , we find that the two
midgap zero-energy states disappear, as shown in the inset
of Fig. 2(a). It characterizes the topological phase transition
boundary as shown by white dashed lines in Fig. 2(c). As it is
well known that a 1D chain of spinless fermions with p-wave

031602-2



RAPID COMMUNICATIONS

EFFECTIVE p-WAVE INTERACTION AND . . . PHYSICAL REVIEW A 93, 031602(R) (2016)

interaction hosts two zero-energy Majorana modes at the ends
of the chain [6], we will pay particular attention to these two
modes, and address the connection between our model and the
spinless p-wave chain below.

Indeed our system can be mapped into the Kitaev model
that describes a system of spinless fermions on a single 1D
chain with nearest-neighbor p-wave interaction. This can be
achieved by redefining the fermion operator index with the
mapping

aj → c2j = cl, bj → c2j+1 = cl+1, (5)

where c represents the annihilation operator for a fictitious
spinless fermion, in terms of which, the original Hamilto-
nian (2) can be rewritten as

H = −
∑

l

[t(c†l cl+1 + H.c.) + μc
†
l cl − Uc

†
l c

†
l+1cl+1cl], (6)

which represents the Hamiltonian of a spinless fermion in
a 1D lattice potential with the new lattice constant ã = a/2.
Figure 1(b) illustrates this mapping, under which the hyperfine
state A (B) of the original system corresponds to the even
(odd) site in the new representation. The s-wave interaction
between the two sublattices is now mapped into an effective
p-wave interaction between two identical fermions at two
nearest-neighbor sites, with the same U appearing in the
original Hamiltonian (2) characterizing the effective p-wave
interaction strength. Therefore, the existence of the zero-
energy Majorana modes stems from the nontrivial topological
properties of Hamiltonian (6), which is well known to generate
the topological superfluid state when μ is below the critical
value [4].

2D lattice model. Our second example concerns a spin-1/2
Fermi gas in a 2D optical lattice. The setup is illustrated in
Fig. 3(a). We consider the 2D spin-dependent lattice potentials

VA(r) = V0 sin2(kLx) + V0 sin2(kLy),

VB(r) = V0 cos2(kLx) + V0 cos2(kLy).
(7)

In such a 2D optical lattice, each fermion in the pseudospin
A state resides in the middle of four B fermions, and
vice versa. The intersublattice tunneling is again induced

FIG. 3. (a) Illustration of the 2D lattice model. An A site (blue
atom clouds) is surrounded by four B sites (red atom clouds), and
vice versa. Similar to the 1D model, the coupling between the two
hyperfine states (black solid lines) is induced by an rf field, and
the atom-atom interaction (green wavy lines) arises from the contact
s-wave interaction between unlike spins. (b) The 2D spinless lattice
model after mapping into the new index representation.

by an rf field, while the intrasublattice tunneling is made
to be negligible. As in our previous example, each A

atom can interact with four nearest-neighbor B atoms by
virtue of the spatial overlap of the Wannier functions of
the two sublattice trap potentials VA(r) and VB(r). The
Hamiltonian in the tight-binding approximation is therefore
expressed as

H =
∑

〈mn,m′n′〉
(−ta†

mnbm′n′ + Ua†
mnb

†
m′n′bm′n′amn)

−μ
∑
mn

(a†
mnamn + b†mnbmn). (8)

Here
∑

〈mn,m′n′〉 accounts for the summation between (m,n)th
site and its four nearest-neighbor sites in the other sublattice.
Similar to the 1D model, the intersublattice tunneling t and
interaction amplitude U are given in Eqs. (3), only that here
the integrals are taken on the 2D space.

Following the similar mean-field BdG approach, we intro-
duce the superfluid order parameters �x ′,2i−1 = −U 〈bmnamn〉,
�x ′,2i = −U 〈am+1,n+1bmn〉, �y ′,2j−1 = −U 〈bm−1,namn〉, and
�y ′,2j = −U 〈am−1,n+1bm−1,n〉. With an open (periodic)
boundary condition in the x (y) direction, the self-consistently
solved BdG equations yield the quasiparticle spectrum shown
in Fig. 4. We find that the superfluid system supports gapless
chiral edge modes when the chemical potential μ is below
the critical value 4t . Tuning μ across 4t , the bulk band gap
closes and reopens, revealing a topological phase transition
from the topologically nontrivial superfluid state (μ < 4t) to
a topologically trivial band insulator (μ > 4t). Meanwhile for
the topological superfluid, there exists a relative phase factor
e±iπ/2 between �x ′s and �y ′s. To understand more clearly
the topological properties of the system, we rotate the x–y

plane by 45◦ anticlockwise, and redefine the fermion operator
index by mapping the original spin-1/2 system into a spinless
Fermi gas with nearest-neighbor p-wave interaction, as shown
in Fig. 3(b). With a periodic boundary condition along both x

and y directions, the momentum space BdG Hamiltonian of
the mapped system can be written as

HBdG(k) =
(

ε(k) �k

�∗
k −ε(k)

)
, (9)

where ε(k) = −2t cos(kx ′ ã) − 2t cos(ky ′ ã) − μ is the single-
particle dispersion with a new lattice constant ã = a/

√
2, and

FIG. 4. Topological edge states in a 2D strip. Tuning the chem-
istry potential μ, the 2D model exhibits a phase transition from
(a) the chiral p-wave superfluid state to (c) a band insulator. We
fix U = −6.31t , and set μ = 2.0t (n = 0.790) for (a), μ = 4.0t

(n = 1.000) for (b), and μ = 5.0t (n = 1.000) for (c). Eη(ky′ ) is
shown in units of t , while ky′ is in units of kL.
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�k = i�x ′ sin(kx ′ ã) + i�y ′ sin(ky ′ ã). Our calculation based
on the mapped Hamiltonian (9) shows that the ground state
is a superfluid state with �x ′ = ±i�y ′ , which confirms the
obtained result based on the original model in the real space.
It indicates that for μ < 4t , the ground state of this 2D
system is the spontaneously time-reversal broken chiral px ±
ipy superfluid state. That the px ± ipy fermionic superfluid
supports zero-energy Majorana modes has been well studied
in earlier works [28,29].

Experimental feasibility. Our proposal can be readily
realized using current technology. The key ingredient is the
spin-dependent lattice potential in Eqs. (1) and (7). Here we
put forward two ideas for its implementation. Perhaps the
most straightforward way is to use a standing wave laser
field whose frequency is properly tuned such that it is blue
detuned for one spin state and red detuned for the other. In
this way, the lattice potentials for the two spin states will be
180◦ out of phase, exactly realizing the potentials (1) and (7).
The second idea is to exploit the polarization of the laser
fields. For example, in the lin ⊥ lin configuration, where two
counterpropagating linearly polarized traveling waves with
polarization perpendicular to each other are employed, two
standing waves with σ± polarization and alternating maxima
and minima will be formed. This idea has been implemented
in several experiments to create spin-dependent lattice po-
tentials [31,32]. As a concrete example, let us consider 40K
and choose the hyperfine state |F,mF 〉 = |9/2,−9/2〉 as state
A and |9/2,−7/2〉 as B. Based on the second idea, we
can realize a lattice with depth V0 = 9ER using lasers with
wavelength λ = 1064 nm. The recoil energy of such an optical
lattice is ER = h2/2mλ2 ≈ 210 nK. By choosing a proper rf
field strength, we can tune � = 1.0ER . Using the standard

technique of Feshbach resonance, we can set g = −5.0ER .
These choices lead to the system parameters used in Figs. 2
and 4 with the tunneling energy t ≈ 0.21ER ≈ 44 nK, and the
interaction strength is U ≈ −1.3ER ≈ −6t .

In summary, we have proposed a method to realize p-
wave superfluids and its supported Majorana fermion states
in s-wave spin-1/2 Fermi gases with properly engineered
spin-dependent lattice potential. Our proposal possesses the
following important advantages: (1) It employs only standard
techniques that have been well demonstrated and are readily
implementable in practice. In particular, it requires no spin-
orbit coupling and no need to load atoms onto high orbitals.
(2) Without the need of the p-wave Feshbach resonance, the
effective p-wave interaction strength in our proposal can be
made to be very strong as it is directly proportional to and on
the same order of the intrinsic s-wave interaction strength.

Finally we comment that even though we used spin-1/2
fermions in our examples, the same idea can be applied to
spin-1/2 bosons, in which case the system can be mapped into
a system of spinless bosons with nearest-neighbor interaction
that may host novel quantum phases, in particular, the
supersolid phase that simultaneously possesses crystalline and
superfluid orders [33–37]. Furthermore, it can be generalized
to higher spatial dimensions where more exotic phases and
effective higher partial-wave interactions can be expected.
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[30] G. Wirth, M. Ölschläger, and A. Hemmerich, Nat. Phys.
7, 147 (2011); P. Soltan-Panahi, D.-S. L uhmann, J.
Struck, P. Windpassinger, and K. Sengstock, ibid. 8, 71
(2012).

[31] O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hänsch, and
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