63,230 research outputs found

    Comment: Monitoring Networked Applications With Incremental Quantile Estimation

    Full text link
    Comment: Monitoring Networked Applications With Incremental Quantile Estimation [arXiv:0708.0302]Comment: Published at http://dx.doi.org/10.1214/088342306000000628 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Affine Hirsch foliations on 3-manifolds

    Full text link
    This paper is devoted to discussing affine Hirsch foliations on 33-manifolds. First, we prove that up to isotopic leaf-conjugacy, every closed orientable 33-manifold MM admits 00, 11 or 22 affine Hirsch foliations. Furthermore, every case is possible. Then, we analyze the 33-manifolds admitting two affine Hirsch foliations (abbreviated as Hirsch manifolds). On the one hand, we construct Hirsch manifolds by using exchangeable braided links (abbreviated as DEBL Hirsch manifolds); on the other hand, we show that every Hirsch manifold virtually is a DEBL Hirsch manifold. Finally, we show that for every nNn\in \mathbb{N}, there are only finitely many Hirsch manifolds with strand number nn. Here the strand number of a Hirsch manifold MM is a positive integer defined by using strand numbers of braids.Comment: 30pages, 4 figures, to appear at Algebr. Geom. Topo

    Impact of regularization on Spectral Clustering

    Full text link
    The performance of spectral clustering can be considerably improved via regularization, as demonstrated empirically in Amini et. al (2012). Here, we provide an attempt at quantifying this improvement through theoretical analysis. Under the stochastic block model (SBM), and its extensions, previous results on spectral clustering relied on the minimum degree of the graph being sufficiently large for its good performance. By examining the scenario where the regularization parameter τ\tau is large we show that the minimum degree assumption can potentially be removed. As a special case, for an SBM with two blocks, the results require the maximum degree to be large (grow faster than logn\log n) as opposed to the minimum degree. More importantly, we show the usefulness of regularization in situations where not all nodes belong to well-defined clusters. Our results rely on a `bias-variance'-like trade-off that arises from understanding the concentration of the sample Laplacian and the eigen gap as a function of the regularization parameter. As a byproduct of our bounds, we propose a data-driven technique \textit{DKest} (standing for estimated Davis-Kahan bounds) for choosing the regularization parameter. This technique is shown to work well through simulations and on a real data set.Comment: 37 page

    Boosting with early stopping: Convergence and consistency

    Full text link
    Boosting is one of the most significant advances in machine learning for classification and regression. In its original and computationally flexible version, boosting seeks to minimize empirically a loss function in a greedy fashion. The resulting estimator takes an additive function form and is built iteratively by applying a base estimator (or learner) to updated samples depending on the previous iterations. An unusual regularization technique, early stopping, is employed based on CV or a test set. This paper studies numerical convergence, consistency and statistical rates of convergence of boosting with early stopping, when it is carried out over the linear span of a family of basis functions. For general loss functions, we prove the convergence of boosting's greedy optimization to the infinimum of the loss function over the linear span. Using the numerical convergence result, we find early-stopping strategies under which boosting is shown to be consistent based on i.i.d. samples, and we obtain bounds on the rates of convergence for boosting estimators. Simulation studies are also presented to illustrate the relevance of our theoretical results for providing insights to practical aspects of boosting. As a side product, these results also reveal the importance of restricting the greedy search step-sizes, as known in practice through the work of Friedman and others. Moreover, our results lead to a rigorous proof that for a linearly separable problem, AdaBoost with \epsilon\to0 step-size becomes an L^1-margin maximizer when left to run to convergence.Comment: Published at http://dx.doi.org/10.1214/009053605000000255 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Number of paths versus number of basis functions in American option pricing

    Full text link
    An American option grants the holder the right to select the time at which to exercise the option, so pricing an American option entails solving an optimal stopping problem. Difficulties in applying standard numerical methods to complex pricing problems have motivated the development of techniques that combine Monte Carlo simulation with dynamic programming. One class of methods approximates the option value at each time using a linear combination of basis functions, and combines Monte Carlo with backward induction to estimate optimal coefficients in each approximation. We analyze the convergence of such a method as both the number of basis functions and the number of simulated paths increase. We get explicit results when the basis functions are polynomials and the underlying process is either Brownian motion or geometric Brownian motion. We show that the number of paths required for worst-case convergence grows exponentially in the degree of the approximating polynomials in the case of Brownian motion and faster in the case of geometric Brownian motion.Comment: Published at http://dx.doi.org/10.1214/105051604000000846 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Stability

    Full text link
    Reproducibility is imperative for any scientific discovery. More often than not, modern scientific findings rely on statistical analysis of high-dimensional data. At a minimum, reproducibility manifests itself in stability of statistical results relative to "reasonable" perturbations to data and to the model used. Jacknife, bootstrap, and cross-validation are based on perturbations to data, while robust statistics methods deal with perturbations to models. In this article, a case is made for the importance of stability in statistics. Firstly, we motivate the necessity of stability for interpretable and reliable encoding models from brain fMRI signals. Secondly, we find strong evidence in the literature to demonstrate the central role of stability in statistical inference, such as sensitivity analysis and effect detection. Thirdly, a smoothing parameter selector based on estimation stability (ES), ES-CV, is proposed for Lasso, in order to bring stability to bear on cross-validation (CV). ES-CV is then utilized in the encoding models to reduce the number of predictors by 60% with almost no loss (1.3%) of prediction performance across over 2,000 voxels. Last, a novel "stability" argument is seen to drive new results that shed light on the intriguing interactions between sample to sample variability and heavier tail error distribution (e.g., double-exponential) in high-dimensional regression models with pp predictors and nn independent samples. In particular, when p/nκ(0.3,1)p/n\rightarrow\kappa\in(0.3,1) and the error distribution is double-exponential, the Ordinary Least Squares (OLS) is a better estimator than the Least Absolute Deviation (LAD) estimator.Comment: Published in at http://dx.doi.org/10.3150/13-BEJSP14 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm
    corecore