1,954 research outputs found
Interaction between Yeast Cdc6 Protein and B-Type Cyclin/Cdc28 Kinases
During purification of recombinant Cdc6 expressed in yeast, we found that Cdc6 interacts with the critical cell cycle, cyclin-dependent protein kinase Cdc28. Cdc6 and Cdc28 can be coimmunoprecipitated from extracts, Cdc6 is retained on the Cdc28-binding matrix p13-agarose, and Cdc28 is retained on an affinity column charged with bacterially produced Cdc6. Cdc6, which is a phosphoprotein in vivo, contains five Cdc28 consensus sites and is a substrate of the Cdc28 kinase in vitro. Cdc6 also inhibits Cdc28 histone H1 kinase activity. Strikingly, Cdc6 interacts preferentially with B-type cyclin/Cdc28 complexes and not Cln/Cdc28 in log-phase cells. However, Cdc6 does not associate with Cdc28 when cells are blocked at the restrictive temperature in a cdc34 mutant, a point in the cell cycle when the B-type cyclin/Cdc28 inhibitor p40Sic1 accumulates and purified p40Sic1 inhibits the Cdc6/Cdc28 interaction. Deletion of the Cdc28 interaction domain from Cdc6 yields a protein that cannot support growth. However, when overproduced, the mutant protein can support growth. Furthermore, whereas overproduction of wild-type Cdc6 leads to growth inhibition and bud hyperpolarization, overproduction of the mutant protein supports growth at normal rates with normal morphology. Thus, the interaction may have a role in the essential function of Cdc6 in initiation and in restraining mitosis until replication is complete
Correlation effects for semiconducting single wall carbon nanotube: a density matrix renormalization group study
In this paper, we report the applicability of the density matrix
renormalization group(DMRG) approach to the cylindrical single wall carbon
nanotube (SWCN) for purpose of its correlation effect. By applying the DMRG
approach to the ++ model, with and being the hopping and
Coulomb energies between the nearest neighboring sites, respectively, and
the onsite Coulomb energy, we calculate the phase diagram for the SWCN with
chiral numbers (), which reflects the competition between the
correlation energy and . Within reasonable parameter ranges, we
investigate possible correlated groundstates, the lowest excitations and the
corresponding correlation functions in which the connection with the excitonic
insulator is particularly addressed.Comment: 1 source files, 5 figure
Hypoxic Conditioned Medium from Rat Cerebral Cortical Cells Enhances the Proliferation and Differentiation of Neural Stem Cells Mainly through PI3-K/Akt Pathways
Purpose
To investigate the effects of hypoxic conditioned media from rat cerebral cortical cells on the proliferation and differentiation of neural stem cells (NSCs) in vitro, and to study the roles of PI3-K/Akt and JNK signal transduction pathways in these processes.
Methods
Cerebral cortical cells from neonatal Sprague–Dawley rat were cultured under hypoxic and normoxic conditions; the supernatant was collected and named ‘hypoxic conditioned medium’ (HCM) and ‘normoxic conditioned medium’ (NCM), respectively. We detected the protein levels (by ELISA) of VEGF and BDNF in the conditioned media and mRNA levels (by RT-PCR) in cerebral cortical cells. The proliferation (number and size of neurospheres) and differentiation (proportion of neurons and astrocytes over total cells) of NSCs was assessed. LY294002 and SP600125, inhibitors of PI3-K/Akt and JNK, respectively, were applied, and the phosphorylation levels of PI3-K, Akt and JNK were measured by western blot.
Results
The protein levels and mRNA expressions of VEGF and BDNF in 4% HCM and 1% HCM were both higher than that of those in NCM. The efficiency and speed of NSCs proliferation was enhanced in 4% HCM compared with 1% HCM. The highest percentage of neurons and lowest percentage of astrocytes was found in 4% HCM. However, the enhancement of NSCs proliferation and differentiation into neurons accelerated by 4% HCM was inhibited by LY294002 and SP600125, with LY294002 having a stronger inhibitory effect. The increased phosphorylation levels of PI3-K, Akt and JNK in 4% HCM were blocked by LY294002 and SP600125.
Conclusions
4%HCM could promote NSCs proliferation and differentiation into high percentage of neurons, these processes may be mainly through PI3-K/Akt pathways
Coupled KdV equations derived from atmospherical dynamics
Some types of coupled Korteweg de-Vries (KdV) equations are derived from an
atmospheric dynamical system. In the derivation procedure, an unreasonable
-average trick (which is usually adopted in literature) is removed. The
derived models are classified via Painlev\'e test. Three types of
-function solutions and multiple soliton solutions of the models are
explicitly given by means of the exact solutions of the usual KdV equation. It
is also interesting that for a non-Painlev\'e integrable coupled KdV system
there may be multiple soliton solutions.Comment: 19 pages, 2 figure
Metamagnetic transitions and anomalous magnetoresistance in EuAgAs single crystal
In this paper, the magnetic and transport properties were systematically
studied for EuAgAs single crystals, crystallizing in a centrosymmetric
trigonal CaCuP type structure. It was confirmed that two magnetic
transitions occur at = 10 K and = 15 K,
respectively. With the increasing field, the two transitions are noticeably
driven to lower temperature. At low temperatures, applying a magnetic field in
the plane induces two successive metamagnetic transitions. For
both and
, EuAgAs shows a positive, unexpected large
magnetoresistance (up to 202\%) at low fields below 10 K, and a large negative
magnetoresistance (up to -78\%) at high fields/intermediate temperatures. Such
anomalous field dependence of magnetoresistance may have potential application
in the future magnetic sensors. Finally, the magnetic phase diagrams of
EuAgAs were constructed for both
and
Recommended from our members
Atomic Layer Deposition of for Passivating AlGaN/GaN High Electron Mobility Transistor Devices
Polycrystalline, partially epitaxial films were grown on AlGaN/GaN substrates by atomic layer deposition (ALD). With this ALD film as the insulator layer, the /AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors showed excellent electrical performance with a high I/I ratio of over 10 and a low subthreshold slope of 75 mV/dec. The UV/NHOH surface treatment on AlGaN/GaN prior to ALD was found to be critical for achieving these excellent figures. In addition, the dielectric is found to be negatively charged, which facilitates the enhancement-mode operation. While bare suffers from moisture degradation, depositing a moisture blocking layer of ALD can effectively eliminate this effect.Chemistry and Chemical Biolog
Genetic ablation of ryanodine receptor 2 phosphorylation at Ser‐2808 aggravates Ca 2+ ‐dependent cardiomyopathy by exacerbating diastolic Ca 2+ release
Phosphorylation of the cardiac ryanodine receptor (RyR2) by protein kinase A (PKA) at Ser‐2808 is suggested to mediate the physiological ‘fight or flight’ response and contribute to heart failure by rendering the sarcoplasmic reticulum (SR) leaky for Ca 2+ . In the present study, we examined the potential role of RyR2 phosphorylation at Ser‐2808 in the progression of Ca 2+ ‐dependent cardiomyopathy (CCM) by using mice genetically modified to feature elevated SR Ca 2+ leak while expressing RyR2s that cannot be phosphorylated at this site (S2808A). Surprisingly, rather than alleviating the disease phenotype, constitutive dephosphorylation of Ser‐2808 aggravated CCM as manifested by shortened survival, deteriorated in vivo cardiac function, exacerbated SR Ca 2+ leak and mitochondrial injury. Notably, the deteriorations of cardiac function, myocyte Ca 2+ handling, and mitochondria integrity were consistently worse in mice with heterozygous ablation of Ser‐2808 than in mice with complete ablation. Wild‐type (WT) and CCM myocytes expressing unmutated RyR2s exhibited a high level of baseline phosphorylation at Ser‐2808. Exposure of these CCM cells to protein phosphatase 1 caused a transitory increase in Ca 2+ leak attributable to partial dephosphorylation of RyR2 tetramers at Ser‐2808 from more fully phosphorylated state. Thus, exacerbated Ca 2+ leak through partially dephosphorylated RyR2s accounts for the prevalence of the disease phenotype in the heterozygous S2808A CCM mice. These results do not support the importance of RyR2 hyperphosphorylation in Ca 2+ ‐dependent heart disease, and rather suggest roles for the opposite process, the RyR2 dephosphorylation at this residue in physiological and pathophysiological Ca 2+ signalling.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106986/1/tjp6067.pd
Effects of substituting rare-earth ion R by non-magnetic impurities in - theory and numerical DMRG results
In this paper we study the effect of substituting R (rare-earth ion) by
non-magnetic ions in the spin-1 chain material . Using a
strong-coupling expansion and numerical density matrix renormalization group
calculations, we show that spin-wave bound states are formed at the impurity
site. Experimental consequences of the bound states are pointed out.Comment: 5 pages, 4 postscript figure
Immuno-Efficacy of a T. gondii Secreted Protein with an Altered Thrombospondin Repeat (TgSPATR) As a Novel DNA Vaccine Candidate against Acute Toxoplasmosis in BALB/c Mice
- …
