15,472 research outputs found
Secure Numerical and Logical Multi Party Operations
We derive algorithms for efficient secure numerical and logical operations
using a recently introduced scheme for secure multi-party
computation~\cite{sch15} in the semi-honest model ensuring statistical or
perfect security. To derive our algorithms for trigonometric functions, we use
basic mathematical laws in combination with properties of the additive
encryption scheme in a novel way. For division and logarithm we use a new
approach to compute a Taylor series at a fixed point for all numbers. All our
logical operations such as comparisons and large fan-in AND gates are perfectly
secure. Our empirical evaluation yields speed-ups of more than a factor of 100
for the evaluated operations compared to the state-of-the-art
Design, analysis, and control of a cable-driven parallel platform with a pneumatic muscle active support
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The neck is an important part of the body that connects the head to the torso, supporting the weight and generating the movement of the head. In this paper, a cable-driven parallel platform with a pneumatic muscle active support (CPPPMS) is presented for imitating human necks, where cable actuators imitate neck muscles and a pneumatic muscle actuator imitates spinal muscles, respectively. Analyzing the stiffness of the mechanism is carried out based on screw theory, and this mechanism is optimized according to the stiffness characteristics. While taking the dynamics of the pneumatic muscle active support into consideration as well as the cable dynamics and the dynamics of the Up-platform, a dynamic modeling approach to the CPPPMS is established. In order to overcome the flexibility and uncertainties amid the dynamic model, a sliding mode controller is investigated for trajectory tracking, and the stability of the control system is verified by a Lyapunov function. Moreover, a PD controller is proposed for a comparative study. The results of the simulation indicate that the sliding mode controller is more effective than the PD controller for the CPPPMS, and the CPPPMS provides feasible performances for operations under the sliding mode control
- …