21,051 research outputs found

    Central Engine Memory of Gamma-Ray Bursts and Soft Gamma-Ray Repeaters

    Get PDF
    Gamma-ray Bursts (GRBs) are bursts of γ\gamma-rays generated from relativistic jets launched from catastrophic events such as massive star core collapse or binary compact star coalescence. Previous studies suggested that GRB emission is erratic, with no noticeable memory in the central engine. Here we report a discovery that similar light curve patterns exist within individual bursts for at least some GRBs. Applying the Dynamic Time Warping (DTW) method, we show that similarity of light curve patterns between pulses of a single burst or between the light curves of a GRB and its X-ray flare can be identified. This suggests that the central engine of at least some GRBs carries "memory" of its activities. We also show that the same technique can identify memory-like emission episodes in the flaring emission in Soft Gamma-Ray Repeaters (SGRs), which are believed to be Galactic, highly magnetized neutron stars named magnetars. Such a phenomenon challenges the standard black hole central engine models for GRBs, and suggest a common physical mechanism behind GRBs and SGRs, which points towards a magnetar central engine of GRBs.Comment: 7 pages, 4 figures, ApJ Letters in pres

    Errors in particle tracking velocimetry with high-speed cameras

    Full text link
    Velocity errors in particle tracking velocimetry (PTV) are studied. When using high-speed video cameras, the velocity error may increase at a high camera frame rate. This increase in velocity error is due to particle-position uncertainty, which is one of two sources of velocity errors studied here. The other source of error is particle acceleration, which has the opposite trend of diminishing at higher frame rates. Both kinds of errors can propagate into quantities calculated from velocity, such as the kinetic temperature of particles or correlation functions. As demonstrated in a dusty plasma experiment, the kinetic temperature of particles has no unique value when measured using PTV, but depends on the sampling time interval or frame rate. It is also shown that an artifact appears in an autocorrelation function computed from particle positions and velocities, and it becomes more severe when a small sampling-time interval is used. Schemes to reduce these errors are demonstrated.Comment: 6 pages, 5 figures, Review of Scientific Instruments, 2011 (In Press
    corecore