17,486 research outputs found

    General correlation functions of the Clauser-Horne-Shimony-Holt inequality for arbitrarily high-dimensional systems

    Full text link
    We generalize the correlation functions of the Clauser-Horne-Shimony-Holt (CHSH) inequality to arbitrarily high-dimensional systems. Based on this generalization, we construct the general CHSH inequality for bipartite quantum systems of arbitrarily high dimensionality, which takes the same simple form as CHSH inequality for two-dimension. This inequality is optimal in the same sense as the CHSH inequality for two dimensional systems, namely, the maximal amount by which the inequality is violated consists with the maximal resistance to noise. We also discuss the physical meaning and general definition of the correlation functions. Furthermore, by giving another specific set of the correlation functions with the same physical meaning, we realize the inequality presented in [Phys. Rev. Lett. {\bf 88,}040404 (2002)].Comment: 4 pages, accepted by Phys. Rev. Let

    Quantum phase transition in a three-level atom-molecule system

    Full text link
    We adopt a three-level bosonic model to investigate the quantum phase transition in an ultracold atom-molecule conversion system which includes one atomic mode and two molecular modes. Through thoroughly exploring the properties of energy level structure, fidelity, and adiabatical geometric phase, we confirm that the system exists a second-order phase transition from an atommolecule mixture phase to a pure molecule phase. We give the explicit expression of the critical point and obtain two scaling laws to characterize this transition. In particular we find that both the critical exponents and the behaviors of ground-state geometric phase change obviously in contrast to a similar two-level model. Our analytical calculations show that the ground-state geometric phase jumps from zero to ?pi/3 at the critical point. This discontinuous behavior has been checked by numerical simulations and it can be used to identify the phase transition in the system.Comment: 8 pages,8 figure

    Towards a Fisher-information description of complexity in de Sitter universe

    Full text link
    Recent developments on holography and quantum information physics suggest that quantum information theory come to play a fundamental role in understanding quantum gravity. Cosmology, on the other hand, plays a significant role in testing quantum gravity effects. How to apply this idea to a realistic universe is still missing. Here we show some concepts in quantum information theory have their cosmological descriptions. Particularly, we show complexity of a tensor network can be regarded as a Fisher information measure(FIM) of a dS universe, followed by several observations: (i) the holographic entanglement entropy has a tensor-network description and admits a information-theoretical interpretation, (ii) on-shell action of dS spacetime has a same description of FIM, (iii) complexity/action(CA) duality holds for dS spacetime. Our result is also valid for f(R)f(R) gravity, whose FIM exhibits the same features of a recent proposed LnL^n norm complexity.Comment: 18 pages, 3 figures. v2: improvements to presentation, fixes typos and matches published versio
    corecore