19,081 research outputs found

    Exact formation of hairy planar black holes

    Full text link
    We consider Einstein gravity minimally coupled to a scalar field with a given potential in general dimensions. We obtain large classes of static hairy planar black holes which are asymptotic to AdS space-times. In particular, for a special case μ=(n2)/2\mu=(n-2)/2, we obtain new classes of exact dynamical solutions describing black holes formation. We find there are two classes of collapse solutions. The first class solutions describe the evolution start from AdS space-time with a naked singularity at the origin. The space-time is linearly unstable and evolves into stationary black hole states even under small perturbation. The second class solutions describe the space-time spontaneously evolves from AdS vacua into stationary black hole states undergoing non-linear instability. We also discuss the global properties of all these dynamical solutions.Comment: 17 pages and 5 figures; the general case was studied analytically; conclusions unchange

    Control of single-photon transport in a one-dimensional waveguide by another single photon

    Full text link
    We study the controllable single-photon transport in a one-dimensional (1D) waveguide with nonlinear dispersion relation coupled to a three-level emitter in cascade configuration. An extra cavity field was introduced to drive one of the level transitions of the emitter. In the resonance case, when the extra cavity does not contain photons, the input single photon will be reflected, and when the cavity contains one photon, the full transmission of the input single photon can be obtained. In the off-resonance case, the single-photon transport can also be controlled by the parameters of the cavity. Therefore, we have shown that the single-photon transport can be controlled by an extra cavity field.Comment: Coments are welcome! 5 pages, 4 figure

    Sparsifying the Fisher Linear Discriminant by Rotation

    Full text link
    Many high dimensional classification techniques have been proposed in the literature based on sparse linear discriminant analysis (LDA). To efficiently use them, sparsity of linear classifiers is a prerequisite. However, this might not be readily available in many applications, and rotations of data are required to create the needed sparsity. In this paper, we propose a family of rotations to create the required sparsity. The basic idea is to use the principal components of the sample covariance matrix of the pooled samples and its variants to rotate the data first and to then apply an existing high dimensional classifier. This rotate-and-solve procedure can be combined with any existing classifiers, and is robust against the sparsity level of the true model. We show that these rotations do create the sparsity needed for high dimensional classifications and provide theoretical understanding why such a rotation works empirically. The effectiveness of the proposed method is demonstrated by a number of simulated and real data examples, and the improvements of our method over some popular high dimensional classification rules are clearly shown.Comment: 30 pages and 9 figures. This paper has been accepted by Journal of the Royal Statistical Society: Series B (Statistical Methodology). The first two versions of this paper were uploaded to Bin Dong's web site under the title "A Rotate-and-Solve Procedure for Classification" in 2013 May and 2014 January. This version may be slightly different from the published versio

    Criticality in Einstein-Gauss-Bonnet Gravity: Gravity without Graviton

    Full text link
    General Einstein-Gauss-Bonnet gravity with a cosmological constant allows two (A)dS spacetimes as its vacuum solutions. We find a critical point in the parameter space where the two (A)dS spacetimes coalesce into one and the linearized perturbations lack any bilinear kinetic terms. The vacuum perturbations hence loose their interpretation as linear graviton modes at the critical point. Nevertheless, the critical theory admits black hole solutions due to the nonlinear effect. We also consider Einstein gravity extended with general quadratic curvature invariants and obtain critical points where the theory has no bilinear kinetic terms for either the scalar trace mode or the transverse modes. Such critical phenomena are expected to occur frequently in general higher derivative gravities.Comment: 21 pages, no figures;refereces adde

    The Binary Space Partitioning-Tree Process

    Get PDF
    The Mondrian process represents an elegant and powerful approach for space partition modelling. However, as it restricts the partitions to be axis-aligned, its modelling flexibility is limited. In this work, we propose a self-consistent Binary Space Partitioning (BSP)-Tree process to generalize the Mondrian process. The BSP-Tree process is an almost surely right continuous Markov jump process that allows uniformly distributed oblique cuts in a two-dimensional convex polygon. The BSP-Tree process can also be extended using a non-uniform probability measure to generate direction differentiated cuts. The process is also self-consistent, maintaining distributional invariance under a restricted subdomain. We use Conditional-Sequential Monte Carlo for inference using the tree structure as the high-dimensional variable. The BSP-Tree process's performance on synthetic data partitioning and relational modelling demonstrates clear inferential improvements over the standard Mondrian process and other related methods

    A comprehensive analysis of Swift/XRT data: I. Apparent spectral evolution of GRB X-ray tails

    Full text link
    An early steep decay component following the prompt GRBs is commonly observed in {\em Swift} XRT light curves, which is regarded as the tail emission of the prompt gamma-rays. Prompted by the observed strong spectral evolution in the tails of GRBs 060218 and 060614, we present a systematic time-resolved spectral analysis for the {\em Swift} GRB tails detected between 2005 February and 2007 January. We select a sample of 44 tails that are bright enough to perform time-resolved spectral analyses. Among them 11 tails are smooth and without superimposing significant flares, and their spectra have no significant temporal evolution. We suggest that these tails are dominated by the curvature effect of the prompt gamma-rays due to delay of propagation of photons from large angles with respect to the line of sight . More interestingly, 33 tails show clear hard-to-soft spectral evolution, with 16 of them being smooth tails directly following the prompt GRBs,while the others being superimposed with large flares. We focus on the 16 clean, smooth tails and consider three toy models to interpret the spectral evolution. The curvature effect of a structured jet and a model invoking superposition of the curvature effect tail and a putative underlying soft emission component cannot explain all the data. The third model, which invokes an evolving exponential spectrum, seems to reproduce both the lightcurve and the spectral evolution of all the bursts, including GRBs 060218 and 060614. More detailed physical models are called for to understand the apparent evolution effect.Comment: 13 pages in emulateapj style,6 figures, 1 table, expanded version, matched to published version, ApJ, 2007, in press. This is the first paper of a series. Paper II see arXiv:0705.1373 (ApJ,2007, in press
    corecore