3 research outputs found

    Energy Resolution Performance of the CMS Electromagnetic Calorimeter

    Get PDF
    The energy resolution performance of the CMS lead tungstate crystal electromagnetic calorimeter is presented. Measurements were made with an electron beam using a fully equipped supermodule of the calorimeter barrel. Results are given both for electrons incident on the centre of crystals and for electrons distributed uniformly over the calorimeter surface. The electron energy is reconstructed in matrices of 3 times 3 or 5 times 5 crystals centred on the crystal containing the maximum energy. Corrections for variations in the shower containment are applied in the case of uniform incidence. The resolution measured is consistent with the design goals

    Energy Resolution of the Barrel of the CMS Electromagnetic Calorimeter

    Get PDF
    The energy resolution of the barrel part of the CMS Electromagnetic Calorimeter has been studied using electrons of 20 to 250 GeV in a test beam. The incident electron's energy was reconstructed by summing the energy measured in arrays of 3x3 or 5x5 channels. There was no significant amount of correlated noise observed within these arrays. For electrons incident at the centre of the studied 3x3 arrays of crystals, the mean stochastic term was measured to be 2.8% and the mean constant term to be 0.3%. The amount of the incident electron's energy which is contained within the array depends on its position of incidence. The variation of the containment with position is corrected for using the distribution of the measured energy within the array. For uniform illumination of a crystal with 120 GeV electrons a resolution of 0.5% was achieved. The energy resolution meets the design goal for the detector

    Results of the first performance tests of the CMS electromagnetic calorimeter

    No full text
    CMS ECALPerformance tests of some aspects of the CMS ECAL were carried out on modules of the "barrel" sub-system in 2002 and 2003. A brief test with high energy electron beams was made in late 2003 to validate prototypes of the new Very Front End electronics. The final versions of the monitoring and cooling systems, and of the high and low voltage regulation were used in these tests. The results are consistent with the performance targets including those for noise and overall energy resolution, required to fulfil the physics programme of CMS at the LHC
    corecore