6 research outputs found

    A study of the formation of fuzzy tungsten in a HiPIMS plasma system

    Get PDF
    Abstract Nanostructured “fuzzy” tungsten has been grown for the first time in a high-power impulse magnetron sputtering HiPIMS system. The fuzzy layers were formed over range of surface temperatures Ts, from 1025 to 1150 K, for helium ion fluences of 5.02 × 1024 m-2, and mean ion bombardment energy of 55 eV. The time-evolution of the helium ion flux (ΓHe) and incident energy (EHe) were determined during the HiPIMS pulse (of width of 150 ”s) using a planar Langmuir probe. The micrographic findings revealed that, the thickness of HiPIMS-grown nano-tendrill layers increased by 83 % (from 274 to 501 nm) for only a 125 K rise in Ts. This result is explained by the fact that higher surface temperatures led to larger helium bubbles which ultimately produce a thicker nanostructured layer. The growth rate of fuzzy tungsten layers in HiPIMS conditions is approximately 50 % lower than those observed for DC magnetron operation.</jats:p

    Nanoscale Thin Films of Niobium Oxide on Platinum Surfaces: Creating a Platform for Optimizing Material Composition and Electrochemical Stability

    Get PDF
    A nanoscale thin film of niobium oxide on a platinum substrate was evaluated for its influence on the electronic and chemical properties of the underlying platinum towards the oxygen reduction reaction with applications to proton exchange membrane fuel cells. The nanoscale thin film of niobium oxide was deposited using atomic layer deposition onto the platinum substrate. A film of niobium oxide is a chemically stable and electronically insulating material that can be used to prevent corrosion and electrochemical degradation when layers are several nanometers thick. These layers can be insulating if sufficiently thick and may not be sufficient to protect the platinum from corrosion if too thin. An ∌3 nm thin film of niobium oxide was fabricated on the platinum surface to determine its influence on the electronic and chemical properties at the interface of these materials. The atomic layer deposition process enabled a precise control over the material composition, structure, and layer thickness. The niobium oxide film was evaluated using cyclic voltammetry and electrochemical impedance spectroscopy to evaluate whether a balance could be found between the inhibition of platinum degradation and electronic insulation of the platinum for use in proton exchange membrane fuel cells. The 3 nm thin niobium oxide film was found to be sufficiently thin to permit electronic conductivity while reducing the incidence of platinum dissolution

    Contact Transfer of Engineered Nanomaterials in the Workplace

    Get PDF
    This study investigates the potential spread of cadmium selenide quantum dots in laboratory environments through contact of gloves with simulated dry spills on laboratory countertops. Secondary transfer of quantum dots from the contaminated gloves to other substrates was initiated by contact of the gloves with different materials found in the laboratory. Transfer of quantum dots to these substrates was qualitatively evaluated by inspection under ultraviolet illumination. This secondary contact resulted in the delivery of quantum dots to all the evaluated substrates. The amount of quantum dots transferred was quantified by elemental analysis. The residue containing quantum dots picked up by the glove was transferred to at least seven additional sections of the pristine substrate through a series of sequential contacts. These results demonstrate the potential for contact transfer as a pathway for spreading nanomaterials throughout the workplace, and that 7-day-old dried spills are susceptible to the propagation of nanomaterials by contact transfer. As research and commercialization of engineered nanomaterials increase worldwide, it is necessary to establish safe practices to protect workers from the potential for chronic exposure to potentially hazardous materials. Similar experimental procedures to those described herein can be adopted by industries or regulatory agencies to guide the development of their nanomaterial safety programmes

    Increasing frailty is associated with higher prevalence and reduced recognition of delirium in older hospitalised inpatients: results of a multi-centre study

    Get PDF
    Purpose: Delirium is a neuropsychiatric disorder delineated by an acute change in cognition, attention, and consciousness. It is common, particularly in older adults, but poorly recognised. Frailty is the accumulation of deficits conferring an increased risk of adverse outcomes. We set out to determine how severity of frailty, as measured using the CFS, affected delirium rates, and recognition in hospitalised older people in the United Kingdom. Methods: Adults over 65 years were included in an observational multi-centre audit across UK hospitals, two prospective rounds, and one retrospective note review. Clinical Frailty Scale (CFS), delirium status, and 30-day outcomes were recorded. Results: The overall prevalence of delirium was 16.3% (483). Patients with delirium were more frail than patients without delirium (median CFS 6 vs 4). The risk of delirium was greater with increasing frailty [OR 2.9 (1.8–4.6) in CFS 4 vs 1–3; OR 12.4 (6.2–24.5) in CFS 8 vs 1–3]. Higher CFS was associated with reduced recognition of delirium (OR of 0.7 (0.3–1.9) in CFS 4 compared to 0.2 (0.1–0.7) in CFS 8). These risks were both independent of age and dementia. Conclusion: We have demonstrated an incremental increase in risk of delirium with increasing frailty. This has important clinical implications, suggesting that frailty may provide a more nuanced measure of vulnerability to delirium and poor outcomes. However, the most frail patients are least likely to have their delirium diagnosed and there is a significant lack of research into the underlying pathophysiology of both of these common geriatric syndromes

    A unifying gravity framework for dispersal

    No full text
    corecore