578 research outputs found

    Early quantitative coronary angiography of saphenous vein grafts for coronary artery bypass grafting harvested by means of open versus endoscopic saphenectomy: a prospective randomized trial

    Get PDF
    AbstractObjectiveEndoscopic saphenectomy is associated with a decreased incidence of wound complications without an increase in histologic trauma or endothelial dysfunction in published reports. Concern remains about the patency of saphenous vein grafts harvested endoscopically and the development of early intimal hyperplasia. The purpose of this study was to compare early quantitative coronary analysis of saphenous vein grafts used for coronary artery bypass grafting harvested with the open versus endoscopic techniques.MethodsForty patients undergoing primary coronary artery bypass grafting surgery with at least 1 saphenous vein graft were randomized preoperatively to open versus endoscopic saphenectomy with bipolar cauterization of side branches. Quantitative coronary angiography was performed a mean of 3 months (range, 1-9 months) after the operation.ResultsThere was no statistically significant difference in the patency rates of internal thoracic artery grafts between the open and endoscopic groups and no statistically significant difference in the patency rates of saphenous vein grafts between both groups (85.2% vs 84.4%, P = .991). Quantitative coronary angiography showed no difference in graft stenosis (≥50% of the internal diameter of the graft) in the body of the saphenous vein grafts in the open versus endoscopic saphenectomy groups (3.7% vs 0%, P = .280).ConclusionAngiographic appearance and patency rates of saphenous vein grafts harvested with the endoscopic technique are similar to those of saphenous vein grafts harvested with the open technique. These results support the use of endoscopic saphenectomy because of the known lower incidence of wound and infectious complications and superior functional results

    Unbalanced dissimilar-fibre Mach-Zehnder interferometer: application as filter

    Get PDF
    An unbalanced Mach-Zehnder interferometer made using dissimilar-fibre fused taper couplers is proposed for filtering applications. The all-fibre device is compact, rugged, simple to make and provides extended control and flexibility for the design of various types of filters

    Bragg gratings in defect-free germanium-doped optical fibers.

    Get PDF
    Bragg gratings have been written in germanium-doped optical fibers that have been treated to remove the UV absorption bands associated with oxygen-deficient defects. When one is using high-intensity 193-nm light from an ArF excimer laser to fabricate the gratings, the refractive index increases and the grating transmission spectra are similar to those obtained in standard (untreated) fiber

    Calculation of the positron bound state with the copper atom

    Get PDF
    A new relativistic method for calculation of positron binding to atoms is presented. The method combines a configuration interaction treatment of the valence electron and the positron with a many-body perturbation theory description of their interaction with the atomic core. We apply this method to positron binding by the copper atom and obtain the binding energy of 170 meV (+ - 10%). To check the accuracy of the method we use a similar approach to calculate the negative copper ion. The calculated electron affinity is 1.218 eV, in good agreement with the experimental value of 1.236 eV. The problem of convergence of positron-atom bound state calculations is investigated, and means to improve it are discussed. The relativistic character of the method and its satisfactory convergence make it a suitable tool for heavier atoms.Comment: 15 pages, 5 figures, RevTe

    Ultraviolet light photosensitivity in Ge-doped silica fibers: wavelength dependence of the light-induced index change.

    Get PDF
    A novel technique is reported for detecting permanent and transient light-induced refractive-index changes (photosensitivity) in optical fibers. The index change is detected by irradiating one arm of an unbalanced Mach–Zehnder fiber interferometer with UV light, thereby changing its optical path length. From a measurement of the change in the spectral response of the Mach–Zehnder interferometer, the change in the fiber core index as a function of wavelength can be determined. The equilibrium change in the core index is found to have an almost constant value of approximately 2.3 × 10−5 over the measured wavelength range of 700 to 1400 nm

    Apodization technique for fiber grating fabrication with a halftone transmission amplitude mask

    Get PDF
    Experimental results of fiber Bragg gratings fabricated with halftone amplitude transmission masks and 10-cm-long phase masks are presented for the first time to our knowledge. The performance of the devices is evaluated in terms of their spectral characteristics and deviation from linear group delay. Good out-of-band sidelobe suppression of -27 dB and group-delay ripple of ?9.5 ps is achieved for fully apodized grating devices

    Efficient Passive ICS Device Discovery and Identification by MAC Address Correlation

    Full text link
    Owing to a growing number of attacks, the assessment of Industrial Control Systems (ICSs) has gained in importance. An integral part of an assessment is the creation of a detailed inventory of all connected devices, enabling vulnerability evaluations. For this purpose, scans of networks are crucial. Active scanning, which generates irregular traffic, is a method to get an overview of connected and active devices. Since such additional traffic may lead to an unexpected behavior of devices, active scanning methods should be avoided in critical infrastructure networks. In such cases, passive network monitoring offers an alternative, which is often used in conjunction with complex deep-packet inspection techniques. There are very few publications on lightweight passive scanning methodologies for industrial networks. In this paper, we propose a lightweight passive network monitoring technique using an efficient Media Access Control (MAC) address-based identification of industrial devices. Based on an incomplete set of known MAC address to device associations, the presented method can guess correct device and vendor information. Proving the feasibility of the method, an implementation is also introduced and evaluated regarding its efficiency. The feasibility of predicting a specific device/vendor combination is demonstrated by having similar devices in the database. In our ICS testbed, we reached a host discovery rate of 100% at an identification rate of more than 66%, outperforming the results of existing tools.Comment: http://dx.doi.org/10.14236/ewic/ICS2018.

    Variable-spectral-response optical waveguide Bragg grating filters for optical signal processing

    Get PDF
    A simple method is described that permits the spectral response (spectral width, shape, and center resonant wavelength) of an optical waveguide Bragg grating to be controlled accurately in a prescribed manner. The control methodology consists of bonding the Bragg grating along the length of a mechanical support structure, which is then loaded with an appropriate force distribution. The function of the support structure is to transfer the strain induced by loading to the grating, thus modifying the grating’s spectral response in accordance with the variation in effective optical pitch induced by the strain transfer. We design and demonstrate a support structure that provides independent control over the spectral width and center wavelength of a Bragg grating

    Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask

    Get PDF
    A photolithographic method is described for fabricating refractive index Bragg gratings in photosensitive optical fiber by using a special phase mask grating made of silica glass. A KrF excimer laser beam (249 nm) at normal incidence is modulated spatially by the phase mask grating. The diffracted light, which forms a periodic, high-contrast intensity pattern with half the phase mask grating pitch, photoimprints a refractive index modulation into the core of photosensitive fiber placed behind, in proximity, and parallel, to the mask; the phase mask grating striations are oriented normal to the fiber axis. This method of fabricating in-fiber Bragg gratings is flexible, simple to use, results in reduced mechanical sensitivity of the grating writing apparatus and is functional even with low spatial and temporal coherence laser sources
    corecore