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Variable-spectral-response optical waveguide Bragg grating
filters for optical signal processing
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A simple method is described that permits the spectral response (spectral width, shape, and center resonant
wavelength) of an optical waveguide Bragg grating to be controlled accurately in a prescribed manner. The
control methodology consists of bonding the Bragg grating along the length of a mechanical support structure,
which is then loaded with an appropriate force distribution. The function of the support structure is to
transfer the strain induced by loading to the grating, thus modifying the grating’s spectral response in
accordance with the variation in effective optical pitch induced by the strain transfer. We design and
demonstrate a support structure that provides independent control over the spectral width and center
wavelength of a Bragg grating.
It is well known that the spectral response characteris-
tic of an optical waveguide Bragg grating can be modi-
fied by the application of stress or by a change in
temperature.1 – 4 This attribute of optical waveguide
Bragg gratings together with their narrow-band reso-
nance response, small size, and light weight suggests
their use as sensor elements for monitoring strain or
temperature (the measurand is the shift in the Bragg
grating resonance from an applied strain or a change
in temperature).5 Usually in sensor applications to
monitor a structure’s strain condition either we bond
the Bragg grating sensor element to the surface of the
structure or we embed it within the structure.

We can use the ease with which a Bragg grating can
be closely coupled mechanically to a support structure
as a means of controlling the properties of the Bragg
grating.2 In particular, because the deformation of
simple beams and columns that is due to an applied
load can be calculated accurately, such support struc-
tures are a suitable means to transfer known strain
distributions to any optical waveguide Bragg grating
that has been bonded to them. One can accomplish
this conveniently by locating the Bragg grating along
the surface (for example, but not exclusively) of a sup-
port structure that has been designed to have the
desired strain distribution under known loading condi-
tions.4 Furthermore, by modifying the loading of the
support structure, we can change the grating’s spectral
response in a wide variety of useful ways.

Using strain transfer from a support structure to
a Bragg grating, we demonstrate in this Letter pre-
cise and reliable control of the optical bandwidth of the
Bragg grating and the independent tuning of its cen-
ter resonant wavelength by using a simple mechanical
jig; then we discuss use of mounting-structure-loading
techniques for the implementation of an optical wave-
guide Bragg grating frequency discriminator device.

In general, the Bragg grating control methodology
that we propose consists of bonding the grating along
(but not necessarily parallel to) the principal axis of
a mechanical support structure, usually in the form
of a beam or column, be it regularly or irregularly
shaped. Typically the support structure is stressed by
0146-9592/95/121438-03$6.00/0
lateral loading (normal to its principal axis) to chirp
the Bragg grating or by longitudinal loading (parallel
to its principal axis) to vary the center resonant Bragg
wavelength. Thus the support structure transfers its
strain along the bonding curve of contact to the Bragg
grating and changes the grating’s spectral response in
accordance with the variation in effective optical pitch
induced by the strain transferred to the grating. By
judicious design of the support structure, choice of the
bonding curve of contact, and selection of the support-
structure-loading strategy, a wide variability in Bragg
grating spectral responses can be obtained.

We consider a horizontal, straight, uniform beam
(length L) of constant rectangular cross section (mo-
ment of inertia of cross section about the neutral axis,
I ) made of homogeneous isotropic material character-
ized by Young’s modulus, E. The bending moment
M sxd (with x measured along the principal axis of
the beam) that is due to an applied load density wsxd
per unit length (which can be any combination of dis-
tributed or point forces) is given6 by the relationship

d2Msxd
dx2

­ wsxd .

This equation can be used to calculate the strain trans-
fer from the beam under load wsxd, to a grating bonded
to the beam. We assume implicitly that the beam is
much stiffer than the fiber and consequently that the
presence of the fiber does not alter significantly the
response of the beam to the applied load wsxd. If we
assume that the angle that the fiber makes with the
plane of the neutral axis of the beam is small, the axial
strain transferred to the fiber at a point x is propor-
tional to Msxd and to the distance ysxd of the fiber from
the neutral axis of the beam (i.e., the curve of contact)
and is inversely proportional to EI .

For example, a linear chirp can be impressed on a
Bragg grating by bonding the grating parallel to the
principal axis fysxd ­ constantg of a uniform cantilever
beam that has been anchored rigidly at one end sx ­ 0d
and subjected to a point-force load fwsxd ­ Fpointdsx 2 Ldg
applied normal to its axis at the other sx ­ Ld. In this
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Fig. 1. Schematic diagram showing the point-force distri-
bution applied to the beam structure and the placement of
the Bragg grating device designed to induce a linear chirp
in the grating.

case M sxd increases linearly from zero at the point of
application of the point force to a maximum at the
anchor point.3 In the linear elastic deformation limit
the strain transferred to the Bragg grating begins at
a low value (in close proximity to the loading point)
and increases linearly to a value proportional to the
loading and the distance from the load point, reaching
maximum strain close to the cantilever anchor point.
In this case the def lection Dsxd of the beam is given by
Dsxd ­ Fpointx2s3L 2 xdy6EI , where 0 # x # L. A linearly
chirped Bragg grating exhibits a broadened spectral
response.3,7 But in the cantilever-based device the
center resonant wavelength of the Bragg grating is
also shifted to a value corresponding to the optical
period of the Bragg grating at the center of the Bragg
grating.4 If the strain is positive (the Bragg grating
has been elongated) the center resonant wavelength
shifts to longer wavelengths. If the strain is negative
(the Bragg grating is compressed), the shift is to
shorter wavelengths. Ideally, it is desirable to control
the degree of chirp (and thereby the spectral width)
independently of the average Bragg grating period (and
thereby the center wavelength). We have designed a
special jig that permits the spectral width and the
center wavelength of the Bragg grating to be controlled
independently of each other.

The device, which is illustrated schematically in
Fig. 1, has the optical waveguide Bragg grating filter
bonded to the side of a uniform beam that has a rect-
angular cross section; the bonding geometry is chosen
to yield a straight (line) curve of contact between the
Bragg grating and the side of the beam under no-load
conditions. The line of contact is angled with respect
to the principal axis of symmetry of the beam as shown.
Six counterbalanced point forces are applied symmetri-
cally to the beam. The countervailing forces, F1, ap-
plied axially to the beam control the center wavelength
of the Bragg grating, and the four equal forces orthogo-
nal to the beam’s principal axis, F2, control the chirp
by applying a pure bending torque [Msxd ­ constant] in
the central region of the beam between the two pairs
of forces, F2. The chirping of the Bragg grating is a
consequence of the symmetric, linear variation in dis-
placement y of the fiber from the neutral plane of the
beam. To tune the center resonant Bragg wavelength,
the countervailing longitudinal forces acting on the
beam are adjusted. To change the chirp of the Bragg
grating, the lateral loading of the support structure is
modified. It is apparent that the strain distribution
transferred to the Bragg grating by F2 lateral load-
ing is linear (compression on the side of the force pair
closest to the beam center and tension on the oppo-
site side). To compute the chirp, we use the following
approximate relationship between the percentage of
linear chirp and the other parameters of the Bragg
grating, where l0 is the center wavelength, neff is the
effective mode index, R is the ref lectivity, and k is the
coupling coefficient8:

% Chirp ­
50l0jkj2L

neff lnfs1 2 Rd21g
.

The Bragg grating that we used for our experiments
was photoimprinted in the optical fiber (Corning
SMF-28) by actinic radiation passing through a zero-
order nulled phase mask.9 The phase mask was fabri-
cated by holographic photolithography. Hydrogen
loading10 was used before photoimprinting to enhance
the photosensitive response of the optical fiber.1 We
carried out experiments by applying forces as shown in
Fig. 1 to a 6-cm-long, 6 mm 3 6 mm rectangular-cross-
section beam with a 3-cm-long uniform Bragg grating
bonded to the side of the beam and with the fiber axis
at an 8.5± angle to the beam axis.

Figure 2 shows the measured spectral response of
the Bragg grating in ref lection for three values of linear
chirp induced by the four transverse forces, F2. These
forces give rise to the transfer of a centered strain dis-
tribution to the Bragg grating; therefore, the effect is
purely to broaden the spectral response of the grating.
In contrast, the longitudinal forces, F1, are used to
tune the center wavelength. The values of percentage
of linear chirp labeling the curves in the figure were
computed with the aid of the formula given above by
a Bragg grating refractive-index modulation amplitude
of 6.6 3 1025. The results show that spectral broaden-
ing by a factor of at least 50 s8 nmy0.15 nmd is easily

Fig. 2. Experimental ref lectivity of the Bragg grating for
three values of chirp.
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Fig. 3. Schematic diagram showing the uniform force dis-
tribution applied to the beam structure and the placement
of the Bragg grating device to induce a quadratic chirp in
the grating.

obtained by strain transfer for the case of a 3-cm-long
uniform Bragg grating. We note that the low-chirp
spectral response exhibits satellite peaks 15 dB lower
with respect to the central peak. The satellite peaks
are the result of a small systematic periodic error in
the mask used to photoimprint the Bragg grating and
are not relevant to the control of the spectral width
of the Bragg grating. The noiselike structure in all
three curves can probably be reduced by substituting
an apodized Bragg grating in place of the uniform grat-
ing we used.

Figure 3 illustrates a loading strategy that is simple
to implement and useful for inducing a quadratic chirp
in an in-fiber Bragg grating and obtaining thereby a
linear discriminator wavelength response. Here x ­
0 at the free end of the beam, ysxd ­ constant, and
wsxd ­ constant, yielding, by integration of the bending
moment equation above, Msxd ­ wx2y2 and therefore a
quadratically increasing strain along the line of contact
to a maximum at the beam anchor point, x ­ 2L. See
Fig. 5 of Matsuhara et al.11 for the theoretical spectral
response of a grating with a quadratic chirp.

In summary, we have fabricated a novel variable-
spectral-response optical waveguide Bragg grating
filter device. The filter is useful for general signal-
processing applications, for example, in dispersion
compensation.12 The method that we used is general
and lends itself to synthesizing many useful and
variable Bragg grating responses.
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