87 research outputs found

    On hybrid states of two and three level atoms

    Full text link
    We calculate atom-photon resonances in the Wigner-Weisskopf model, admitting two photons and choosing a particular coupling function. We also present a rough description of the set of resonances in a model for a three-level atom coupled to the photon field. We give a general picture of matter-field resonances these results fit into.Comment: 33 pages, 12 figure

    On the consequences of the fact that atomic levels have a certain width

    Full text link
    This note presents two ideas. The first one is that quantum theory has a fundamentally perturbative basis but leads to nonperturbative states which it would seem natural to take into account in the foundation of a theory of quantum phenomena. The second one consists in questioning the validity of the present notion of time. Both matters are related to the fact that atomic levels have a certain width. This note is presented qualitatively so as to evidence its main points, independently of the models on which these have been tested.Comment: 8 page

    Exact Solution Methods for the kk-item Quadratic Knapsack Problem

    Full text link
    The purpose of this paper is to solve the 0-1 kk-item quadratic knapsack problem (kQKP)(kQKP), a problem of maximizing a quadratic function subject to two linear constraints. We propose an exact method based on semidefinite optimization. The semidefinite relaxation used in our approach includes simple rank one constraints, which can be handled efficiently by interior point methods. Furthermore, we strengthen the relaxation by polyhedral constraints and obtain approximate solutions to this semidefinite problem by applying a bundle method. We review other exact solution methods and compare all these approaches by experimenting with instances of various sizes and densities.Comment: 12 page

    BMJ Open

    Get PDF
    OBJECTIVES: To describe (i) the trend in oral anticoagulant (OAC) use following the introduction of non-vitamin K antagonist oral anticoagulant (NOAC) therapy for stroke prevention in atrial fibrillation (AF) patients and (ii) the current patterns of use of NOAC therapy in new users with AF in France. DESIGN: (i) Repeated cross-sectional study and (ii) population-based cohort study. SETTING: French national healthcare databases (50 million beneficiaries). PARTICIPANTS: (i) Patients with identified AF in 2011, 2013 and 2016 and (ii) patients with AF initiating OAC therapy in 2015-2016. PRIMARY AND SECONDARY OUTCOME MEASURES: (i) Trend in OAC therapy use in patients with AF and (ii) patterns of use of NOAC therapy in new users with AF. RESULTS: Between 2011 and 2016, use of OAC therapy moderately increased (+16%), while use of antiplatelet therapy decreased (-22%) among all patients with identified AF. In 2016, among the 1.1 million AF patients, 66% used OAC therapy and were more likely to be treated by vitamin K antagonist (VKA) than NOAC therapy, including patients at higher risk of stroke (63.5%), while 33% used antiplatelet therapy. Among 192 851 new users of OAC therapy in 2015-2016 with identified AF, NOAC therapy (66.3%) was initiated more frequently than VKA therapy, including in patients at higher risk of stroke (57.8%). Reduced doses were prescribed in 40% of NOAC new users. Several situations of inappropriate use at NOAC initiation were identified, including concomitant use of drugs increasing the risk of bleeding (one in three new users) and potential NOAC underdosing. CONCLUSIONS: OAC therapy use in patients with AF remains suboptimal 4 years after the introduction of NOACs for stroke prevention in France and improvement in appropriate prescribing regarding NOAC initiation is needed. However, NOAC therapy is now the preferred drug class for initiation of OAC therapy in patients with AF, including in patients at higher risk of stroke

    Engineering Branch-and-Cut Algorithms for the Equicut Problem

    Get PDF
    A minimum equicut of an edge-weighted graph is a partition of the nodes of the graph into two sets of equal size such hat the sum of the weights of edges joining nodes in different partitions is minimum. We compare basic linear and semidefnite relaxations for the equicut problem, and and that linear bounds are competitive with the corresponding semidefnite ones but can be computed much faster. Motivated by an application of equicut in theoretical physics, we revisit an approach by Brunetta et al. and present an enhanced branch-and-cut algorithm. Our computational results suggest that the proposed branch-andcut algorithm has a better performance than the algorithm of Brunetta et al.. Further, it is able to solve to optimality in reasonable time several instances with more than 200 nodes from the physics application
    corecore