67 research outputs found

    Dental equipment test during zero-gravity flight

    Get PDF
    The overall objectives of this program were to establish performance criteria and develop prototype equipment for use in the Health Maintenance Facility (HMF) in meeting the needs of dental emergencies during space missions. The primary efforts during this flight test were to test patient-operator relationships, patent (manikin) restraint and positioning, task lighting systems, use and operation of dental rotary instruments, suction and particle containment system, dental hand instrument delivery and control procedures, and the use of dental treatment materials. The initial efforts during the flight focused on verification of the efficiency of the particle containment system. An absorptive barrier was also tested in lieu of the suction collector. To test the instrument delivery system, teeth in the manikin were prepared with the dental drill to receive restorations, some with temporary filling materials and another with definitive filling material (composite resin). The best particle containment came from the combination use of the laminar-air/suction collector in concert with immediate area suction from a surgical high-volume suction tip. Lighting in the treatment area was provided by a flexible fiberoptic probe. This system is quite effective for small areas, but for general tasks ambient illumination is required. The instrument containment system (elastic cord network) was extremely effective and easy to use. The most serious problem with instrument delivey and actual treatment was lack of time during the microgravity sequences. The restorative materials handled and finished well

    Evaluation of cardiopulmonary resuscitation techniques in microgravity

    Get PDF
    Cardiopulmonary resuscitation (CPR) techniques were investigated in microgravity with specific application to planned medical capabilities for Space Station Freedom (SSF). A KC-135 parabolic flight test was performed with the goal of evaluating and quantifying the efficacy of different types of microgravity CPR techniques. The flight followed the standard 40 parabola profile with 20 to 25 seconds of near-zero gravity in each parabola. Three experiments were involved chosen for their clinical background, certification, and practical experience in prior KC-135 parabolic flight. The CPR evaluation was performed using a standard training mannequin (recording resusci-Annie) which was used in practice prior to the actual flight. Aboard the KC-135, the prototype medical restraint system (MRS) for the SSF Health Maintenance Facility (HMF) was used for part of the study. Standard patient and crew restraints were used for interface with the MRS. During the portion of study where CPR was performed without MRS, a set of straps for crew restraint similar to those currently employed for the Space Shuttle program were used. The entire study was recorded via still camera and video

    Health maintenance facility: Dental equipment requirements

    Get PDF
    The objectives were to test the effectiveness of the Health Maintenance Facility (HMF) dental suction/particle containment system, which controls fluids and debris generated during simulated dental treatment, in microgravity; to test the effectiveness of fiber optic intraoral lighting systems in microgravity, while simulating dental treatment; and to evaluate the operation and function of off-the-shelf dental handheld instruments, namely a portable dental hand drill and temporary filling material, in microgravity. A description of test procedures, including test set-up, flight equipment, and the data acquisition system, is given

    Evaluation of prototype air/fluid separator for Space Station Freedom Health Maintenance Facility

    Get PDF
    A prototype air/fluid separator suction apparatus proposed as a possible design for use with the Health Maintenance Facility aboard Space Station Freedom (SSF) was evaluated. A KC-135 parabolic flight test was performed for this purpose. The flights followed the standard 40 parabola profile with 20 to 25 seconds of near-zero gravity in each parabola. A protocol was prepared to evaluate the prototype device in several regulator modes (or suction force), using three fluids of varying viscosity, and using either continuous or intermittent suction. It was felt that a matrixed approach would best approximate the range of utilization anticipated for medical suction on SSF. The protocols were performed in one-gravity in a lab setting to familiarize the team with procedures and techniques. Identical steps were performed aboard the KC-135 during parabolic flight

    Application and use of spinal immobilization devices in zero-gravity flight

    Get PDF
    A KC-135 parabolic flight was performed for the purpose of evaluation of spinal immobilization techniques in microgravity. The flight followed the standard 40 parabola profile with four NASA/KRUG experimenters involved. One performed as coordinator/recorder, one as test subject, and two as the Crew Medical Officers (CMO). The flight was to evaluate the application of spinal immobilization devices and techniques in microgravity as are performed during initial stabilization or patient transport scenarios. The sequence of detail for examination of the following objectives included: attempted cervical spine immobilization with all free floating, the patient restrained to the floor, various hand positioning techniques; c-collar placement; Kendrick Extrication Device (KED) application with various restraints for patient and CMO; patient immobilization and transport using the KED; patient transported on KED and spine board. Observations for each task are included. Major conclusions and issues are also included

    Minor surgery in microgravity

    Get PDF
    The purpose is to investigate and demonstrate equipment and techniques proposed for minor surgery on Space Station Freedom (SSF). The objectives are: (1) to test and evaluate methods of surgical instrument packaging and deployment; (2) to test and evaluate methods of surgical site preparation and draping; (3) to evaluate techniques of sterile procedure and maintaining sterile field; (4) to evaluate methods of trash management during medical/surgical procedures; and (4) to gain experience in techniques for performing surgery in microgravity. A KC-135 parabolic flight test was performed on March 30, 1990 with the goal of investigating and demonstrating surgical equipment and techniques under consideration for use on SSF. The flight followed the standard 40 parabola profile with 20 to 25 seconds of near-zero gravity in each parabola

    Emergency medical services

    Get PDF
    When NASA was established in 1958, it was known that space flight would require efforts beyond those of NASA to ensure the health and safety of our astronauts. On 10 Aug. 1958, a Secretary of Defense memorandum was signed that assigned the first Department of Defense (DOD) Manager to provide support to NASA for Project Mercury. This established a chain of command through the Joint Chiefs of Staff to the Secretary of Defense. The current charter is dated 19 Mar. 1986 and assigns the DOD Manager responsibilities to the Commander and Chief, US Space Command. The DOD Managers charter has many support areas and among them are recovery of astronauts and medical support. Today these efforts support the Space Shuttle and Space Station Programs. Briefly, the program works with each organization tasking the other through a requirements document. Level of care, communications, and recovery requirements are established; NASA and the DOD provide the capability to meet them. NASA is also responsible for the specialized training and equipment needed to meet these requirements. A Shuttle launch a KSC requires an Emergency Medical Services (EMS) coordinator on console to facilitate communications, ensure proper coverage, and coordinate with area hospitals. A contingent of NASA medical personnel are assembled to provide triage and medical support capabilities. The DOD provides medical evacuation (MEDEVAC) helicopters with surgeons and pararescue specialists (PJ's) or emergency medical technicians (EMT's). Each helicopter is equipped with at least one doctor and one PJ/EMT per astronaut crew member. Transoceanic abort landing (TAL) sites and end of mission (EOM) sites have similar structures, with TAL sites utilizing fixed wingg aircraft for MEDEVAC. The DOD also supports contingency planning for the support and return of crew members from the Space Station Freedom. Much of this support has been directed at the recovery of crew members following the landing of an Assured Crew Return Vehicle

    Fingered bola body, bola with same, and methods of use

    Get PDF
    The present invention discloses bola bodies, bolas, and a snaring method which makes use such devices. A bola body, according to the present invention, is nonspherical or irregular in shape rather than a smooth sphere or ovoid body. One or more fingers extends from the bola body. These fingers may be relatively straight or they may have crooked or bent portions to enhance entanglement with a bola line or lines or with each other. Two or more of such fingers may be used and may be regularly or irregularly spaced apart on a bola body. A bola with such bodies includes lines which are connected to the other bodies. In one particular embodiment of a bola body, according to the present invention, the body has an irregular shape with a bottom rectangular portion and a top pyramid portion forming a nose. A plurality of fingers is extended from the pyramidal top portion with one finger extended up and away from each of four corners of the top portion. Such a bola body tends to be initially oriented with its nose and fingers against an object being snared since the body is pulled nose first when a bola line is secured at the tip of the pyramidal portion of the bola body. With such a bola, an unwrapping bola body can slip around a target member so that two of the rod-shaped fingers catch a bola line and guide it into an area or crook between the fingers and a side of the top pyramidal portion of the bola body. Tension on the bola line maintains the line in the crook and tends to press the fingers against the unwrapped target member to stabilize the wrapping of the line about the target member. With such a bola, it is difficult for two or more lines unwrapping in different directions to move past one another without being forced together by line tension. Also, the fingers of such bola bodies may hook and hold each other. The fingers may also hook or entangle some object on or portion of the target member. A probable known target member has known dimensions and shapes so that the bola may be sized and configured to reliably snare such a known target. The bolas can be optimally sized, fashioned, and configured to contact and hold a probable target of known size, dimension, and shape

    Delivery of cardiopulmonary resuscitation in the microgravity environment

    Get PDF
    The microgravity environment presents several challenges for delivering effective cardiopulmonary resuscitation (CPR). Chest compressions must be driven by muscular force rather than by the weight of the rescuer's upper torso. Airway stabilization is influenced by the neutral body posture. Rescuers will consist of crew members of varying sizes and degrees of physical deconditioning from space flight. Several methods of CPR designed to accommodate these factors were tested in the one G environment, in parabolic flight, and on a recent shuttle flight. Methods: Utilizing study participants of varying sizes, different techniques of CPR delivery were evaluated using a recording CPR manikin to assess adequacy of compressive force and frequency. Under conditions of parabolic flight, methods tested included conventional positioning of rescuer and victim, free floating 'Heimlich type' compressions, straddling the patient with active and passive restraints, and utilizing a mechanical cardiac compression assist device (CCAD). Multiple restrain systems and ventilation methods were also assessed. Results: Delivery of effective CPR was possible in all configurations tested. Reliance on muscular force alone was quickly fatiguing to the rescuer. Effectiveness of CPR was dependent on technique, adequate restraint of the rescuer and patient, and rescuer size and preference. Free floating CPR was adequate but rapidly fatiguing. The CCAD was able to provide adequate compressive force but positioning was problematic. Conclusions: Delivery of effective CPR in microgravity will be dependent on adequate resuer and patient restraint, technique, and rescuer size and preference. Free floating CPR may be employed as a stop gap method until patient restraint is available. Development of an adequate CCAD would be desirable to compensate for the effects of deconditioning

    A prototype Crew Medical Restraint System (CMRS) for Space Station Freedom

    Get PDF
    The Crew Medical Restrain System (CMRS) is a prototype system designed and developed for use as a universally deployable medical restraint/workstation on Space Station Freedom (SSF), the Shuttle Transportation System (STS), and the Assured Crew Rescue Vehicle (ACRV) for support of an ill or injured crewmember requiring stabilization and transportation to Earth. The CMRS will support all medical capabilities of the Health Maintenance Facility (HMF) by providing a restraint/interface system for all equipment (advance life support packs, defibrillator, ventilator, portable oxygen supply, IV pump, transport monitor, transport aspirator, and intervenous fluids delivery system) and personnel (patient and crew medical officers). It must be functional within the STS, ACRV, and all SSF habitable volumes. The CMRS will allow for medical capabilities within CPR, ACLS and ATLS standards of care. This must all be accomplished for a worst case transport time scenario of 24 hours from SSF to a definitive medical care facility on Earth. A presentation of the above design prototype with its subsequent one year SSF/HMF and STS/ACRV high fidelity mock-up ground based simulation testing will be given. Also, parabolic flight and underwater Weightless Test Facility evaluations will be demonstrated for various medical contingencies. The final design configuration to date will be discussed with future space program impact considerations
    corecore