28 research outputs found

    Clinical Pharmacokinetics and Dose Recommendations for Posaconazole in Infants and Children.

    Get PDF
    OBJECTIVES: The objectives of this study were to investigate the population pharmacokinetics of posaconazole in immunocompromised children, evaluate the influence of patient characteristics on posaconazole exposure and perform simulations to recommend optimal starting doses. METHODS: Posaconazole plasma concentrations from paediatric patients undergoing therapeutic drug monitoring were extracted from a tertiary paediatric hospital database. These were merged with covariates collected from electronic sources and case-note reviews. An allometrically scaled population-pharmacokinetic model was developed to investigate the effect of tablet and suspension relative bioavailability, nonlinear bioavailability of suspension, followed by a step-wise covariate model building exercise to identify other important sources of variability. RESULTS: A total of 338 posaconazole plasma concentrations samples were taken from 117 children aged 5 months to 18 years. A one-compartment model was used, with tablet apparent clearance standardised to a 70-kg individual of 15 L/h. Suspension was found to have decreasing bioavailability with increasing dose; the estimated suspension dose to yield half the tablet bioavailability was 99 mg/m2. Diarrhoea and proton pump inhibitors were also associated with reduced suspension bioavailability. CONCLUSIONS: In the largest population-pharmacokinetic study to date in children, we have found similar covariate effects to those seen in adults, but low bioavailability of suspension in patients with diarrhoea or those taking concurrent proton pump inhibitors, which may in particular limit the use of posaconazole in these patients

    Therapeutic Drug Monitoring of Everolimus: A Consensus Report

    No full text
    In 2014, the Immunosuppressive Drugs Scientific Committee of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology called a meeting of international experts to provide recommendations to guide therapeutic drug monitoring (TDM) of everolimus (EVR) and its optimal use in clinical practice. EVR is a potent inhibitor of the mammalian target of rapamycin, approved for the prevention of organ transplant rejection and for the treatment of various types of cancer and tuberous sclerosis complex. EVR fulfills the prerequisites for TDM, having a narrow therapeutic range, high interindividual pharmacokinetic variability, and established drug exposure-response relationships. EVR trough concentrations (C-0) demonstrate a good relationship with overall exposure, providing a simple and reliable index for TDM. Whole-blood samples should be used for measurement of EVR C-0, and sampling times should be standardized to occur within 1 hour before the next dose, which should be taken at the same time everyday and preferably without food. In transplantation settings, EVR should be generally targeted to a C-0 of 3-8 ng/mL when used in combination with other immunosuppressive drugs (calcineurin inhibitors and glucocorticoids); in calcineurin inhibitor-free regimens, the EVR target C-0 range should be 6-10 ng/mL. Further studies are required to determine the clinical utility of TDM in nontransplantation settings. The choice of analytical method and differences between methods should be carefully considered when determining EVR concentrations, and when comparing and interpreting clinical trial outcomes. At present, a fully validated liquid chromatography tandem mass spectrometry assay is the preferred method for determination of EVR C-0, with a lower limit of quantification close to 1 ng/mL. Use of certified commercially available whole-blood calibrators to avoid calibration bias and participation in external proficiency-testing programs to allow continuous cross-validation and proof of analytical quality are highly recommended. Development of alternative assays to facilitate on-site measurement of EVR C-0 is encouraged
    corecore