32 research outputs found

    Complete genome sequence of phocine distemper virus isolated from a harbor seal (Phoca vitulina) during the 1988 North Sea epidemic

    Get PDF
    Phocine distemper virus (PDV) was identified as the cause of a large morbillivirus outbreak among harbor seals in the North Sea in 1988. PDV is a member of the family Paramyxoviridae, genus Morbillivirus. Until now, no full-genome sequence of PDV has been available

    Canine distemper virus ISCOMS induce protection in harbour seals (Phoca vitulina) against phocid distemper but still allow subsequent infection with phocid distemper virus-1.

    Get PDF
    A candidate canine distemper virus (CDV) ISCOM vaccine has been shown to be effective in protecting harbour seals (Phoca vitulina) from phocid distemper in 1988. However, of the 35 harbour seals receiving this vaccine upon admission to a seal rehabilitation and research centre (Pieterburen, The Netherlands) in 1989, six developed mild inflammatory symptoms of the respiratory tract. Phocid distemper virus-1 (PDV-1) could be isolated from three of these animals. This indicates that the vaccine affords protection from phocid distemper, but may still allow PDV-1 infection of the respiratory tract. Contacts with non-vaccinated seals should then be prevented until no more virus is excreted. It is speculated that this PDV-1 infection of the respiratory tract in CDV-ISCOM vaccinated seals is followed by a lifelong immunity

    Influenza A and B virus attachment to respiratory tract in marine mammals

    Get PDF
    Patterns of virus attachment to the respiratory tract of 4 marine mammal species were determined for avian and human influenza viruses. Attachment of avian influenza A viruses (H4N5) and (H7N7) and human influenza B viruses to trachea and bronchi of harbor seals is consistent with reported influenza outbreaks in this species

    Central nervous system disease and genital disease in harbor porpoises (Phocoena phocoena) are associated with different herpesviruses

    Get PDF
    Herpesvirus infection causes disease of variable severity in many species, including cetaceans. However, little is known about herpesvirus infection in harbor porpoises (Phocoena phocoena), despite being widespread in temperate coastal waters of the Northern Hemisphere. Therefore, we examined harbor porpoises that stranded alive in the Netherlands, Belgium, and Germany between 2000 and 2014 for herpesvirus infection and associated disease. Porpoises that died or had to be euthanized were autopsied, and samples were collected for virological and pathological analyses. We found one known herpesvirus (Phocoena phocoena herpesvirus type 1, PPHV-1) - a gammaherpesvirus - and two novel herpesviruses (PPHV-2 and PPHV-3) - both alphaherpesviruses - in these porpoises. A genital plaque, in which PPHV-1 was detected, occurred in 1% (1/117) of porpoises. The plaque was characterized by epithelial hyperplasia and intranuclear inclusion bodies that contained herpesvirus-like particles, and that stained positive by a PPHV-1-specific in situ hybridization test. PPHV-2 occurred in the brain of 2% (1/74) of porpoises. This infection was associated with lymphocytic encephalitis, characterized by neuronal necrosis and intranuclear inclusion bodies containing herpesvirus-like particles. PPHV-3 had a prevalence of 5% (4/74) in brain tissue, 5% (2/43) in blowhole swabs, and 2% (1/43) in genital swabs, but was not associated with disease. Phylogenetically, PPHV-1 was identical to a previously reported herpesvirus from a harbor porpoise, PPHV-2 showed closest identity with two herpesviruses from dolphins, and PPHV-3 showed closest identity with a cervid herpesvirus. In conclusion, harbor

    No serological evidence that harbour porpoises are additional hosts of influenza B viruses

    Get PDF
    Influenza A and B viruses circulate among humans causing epidemics almost annually. While various hosts for influenza A viruses exist, influenza B viruses have been detected only in humans and seals. However, recurrent infections of seals in Dutch coastal waters with influenza B viruses that are antigenetically distinct from influenza B viruses circulating among humans suggest that influenza B viruses have been introduced into this seal population by another, non-human, host. Harbour porpoises (Phocoena phocoena) are sympatric with seals in these waters and are also occasion

    Mass mortality in seals caused by a newly discovered morbillivirus.

    Get PDF
    During a recent disease outbreak among harbour seals (Phoca vitulina) in the North and Baltic seas, more than 17,000 animals have died. The clinical symptoms and pathological findings were similar to those of distemper in dogs. Based on a seroepizootiological study, using a canine distemper virus (CDV) neutralization assay, it was shown that CDV or a closely related morbillivirus (phocid distemper virus-PDV) was the primary cause of the disease. The virus was isolated in cell culture from the organs of dead seals and characterized as a morbillivirus by serology (immunofluorescence neutralization and enzyme-linked immunosorbent assays) and by negative contrast electron microscopy. Experimental infection of SPF dogs resulted in the development of mild clinical signs of distemper and CDV-neutralizing antibodies. The disease was reproduced in seals by experimental inoculation of organ material from animals that had died during the outbreak. However, seals that had been vaccinated with experimental inactivated CDV vaccines were protected against this challenge. This fulfilled the last of Koch's postulates, confirming that the morbillivirus isolated from the seal organs, was the primary cause of the disease outbreak. The recent demonstration of the presence of a similar virus in Lake Baikal seals (Phoca sibirica), which infected these Siberian seals 1 year before the northwestern European seals were infected, raises new questions about the origin of this infectious disease in pinnipeds

    Vaccination of harbour seals (Phoca vitulina) against phocid distemper with two different inactivated canine distemper virus (CDV) vaccines.

    Get PDF
    Two inactivated canine distemper virus (CDV) vaccines--an adjuvanted whole inactivated virus and a subunit ISCOM preparation--were tested for their ability to induce protective immunity in harbour seals (Phoca vitulina) against phocid distemper, a disease that recently killed greater than 17,000 harbour seals in the North and Baltic seas, and was shown to be caused by infection with a newly discovered morbillivirus, which is antigenically closely related to CDV. Four CDV seronegative harbour seals were vaccinated three times with the whole-virus vaccine, two with the ISCOM subunit vaccine and two were sham-vaccinated with an antigen-free preparation. Ten days after the last vaccination, when all six vaccinated animals had developed CDV neutralizing antibody titres ranging from 300 to 3000, all eight animals were challenged by the oculonasal and the peritoneal routes, with an organ suspension from dead seals. None of the six vaccinated animals developed clinical signs. The two sham-vaccinated seals died on days 14 and 18, respectively, after having shown a body temperature rise, respiratory symptoms and weight loss. In organs from both dead animals morbillivirus antigen was demonstrated with an enzyme-linked immunosorbent assay and an immunofluorescence assay. One of these two animals had developed a low titre of CDV-specific antibodies just before death. These data clearly indicate that seals can be protected from fatal challenge with the phocid distemper virus (PDV), by vaccination with certain inactivated CDV vaccines. They also reconfirm that infection with PDV should be considered the primary cause of the recent epizootic in seals

    Molecular epidemiology of seal parvovirus, 1988-2014

    Get PDF
    A novel parvovirus was discovered recently in the brain of a harbor seal (Phoca vitulina) with chronic meningo-encephalitis. Phylogenetic analysis of this virus indicated that it belongs to the genus Er

    Faeces as a novel material to estimate lyssavirus prevalence in bat populations

    Get PDF
    Rabies is caused by infection with a lyssavirus. Bat rabies is of concern for both public health and bat conservation. The current method for lyssavirus prevalence studies in bat populations is by oral swabbing, which is invasive for the bats, dangerous for handlers, time-consuming and expensive. In many situations, such sampling is not feasible, and hence, our understanding of epidemiology of bat rabies is limited. Faeces are usually easy to collect from bat colonies without disturbing the bats and thus could be a practical and feasible material for lyssavirus prevalence studies. To further explore this idea, we performed virological analysis on faecal pellets and oral swabs of seven serotine bats (Eptesicus serotinus) that were positive for European bat 1 lyssavirus in the brain. We also performed immunohistochemical and virological analyses on digestive tract samples of these bats to determine potential sources of lyssavirus in the faeces. We found that lyssavirus detection by RT-qPCR was nearly as sensitive in faecal pellets (6/7 bats positive, 86%) as in oral swabs (7/7 bats positive, 100%). The likely source of lyssavirus in the faeces was virus excreted into the oral cavity from the salivary glands (5/6 bats positive by immunohistochemistry and RT-qPCR) or tongue (3/4 bats positive by immunohistochemistry) and swallowed with saliva. Virus could not be isolated from any of the seven faecal pellets, suggesting the lyssavirus detected in faeces is not infectious. Lyssavirus detection in the majority of faecal pellets of infected bats shows that this novel material should be further explored for lyssavirus prevalence studies in bats

    Genetic characterization of wild-type measles viruses circulating in suburban Khartoum, 1997-2000

    Get PDF
    Measles remains endemic in many East African countries, where it is often associated with high morbidity and mortality. We collected clinical specimens from Sudanese measles patients between July 1997 and July 2000. Sequencing of the 3' 456 nucleotides of the nucleoprotein gene from 33 measles virus (MV) isolates and 8 RNA samples extracted from clinical specimens demonstrated the presence of a single endemic MV strain with little sequence variation over time (overall nucleotide divergence of 0 to 1.3%). This was confirmed by sequencing of the complete H gene of two isolates from 1997 and two from 2000, in which the overall divergence ranged between 0 and 0.5%. Comparison with MV reference strains demonstrated that the viruses belonged to clade B, genotype B3, and were most closely related to a set of viruses recently isolated in Nigeria. Our study demonstrates a remarkable genetic stability of an endemically circulating MV strain
    corecore