48 research outputs found

    Pollen exposure is associated with risk of respiratory symptoms during the first year of life

    Full text link
    BACKGROUND: Pollen exposure is associated with respiratory symptoms in children and adults. However, the association of pollen exposure with respiratory symptoms during infancy, a particularly vulnerable period, remains unclear. We examined whether pollen exposure is associated with respiratory symptoms in infants and whether maternal atopy, infant's sex or air pollution modifies this association. METHODS: We investigated 14,874 observations from 401 healthy infants of a prospective birth cohort. The association between pollen exposure and respiratory symptoms, assessed in weekly telephone interviews, was evaluated using generalized additive mixed models (GAMMs). Effect modification by maternal atopy, infant's sex, and air pollution (NO2_{2} , PM2.5_{2.5} ) was assessed with interaction terms. RESULTS: Per infant, 37 ± 2 (mean ± SD) respiratory symptom scores were assessed during the analysis period (January through September). Pollen exposure was associated with increased respiratory symptoms during the daytime (RR [95% CI] per 10% pollen/m3^{3} : combined 1.006 [1.002, 1.009]; tree 1.005 [1.002, 1.008]; grass 1.009 [1.000, 1.23]) and nighttime (combined 1.003 [0.999, 1.007]; tree 1.003 [0.999, 1.007]; grass 1.014 [1.004, 1.024]). While there was no effect modification by maternal atopy and infant's sex, a complex crossover interaction between combined pollen and PM2.5_{2.5} was found (p-value 0.003). CONCLUSION: Even as early as during the first year of life, pollen exposure was associated with an increased risk of respiratory symptoms, independent of maternal atopy and infant's sex. Because infancy is a particularly vulnerable period for lung development, the identified adverse effect of pollen exposure may be relevant for the evolvement of chronic childhood asthma

    Glucocorticoid metabolites in newborns : a marker for traffic noise related stress?

    Get PDF
    Traffic noise has been associated with an increased risk for several non-auditory health effects, which may be explained by a noise-induced release of stress hormones (e.g. glucocorticoids). Although several studies in children and adults have indicated an increased secretion of glucocorticoids after exposure to noise, information regarding newborns is scarce.; To investigate the association between residential exposure to road traffic noise and postnatal stress response, as assessed by the concentration of glucocorticoids at five weeks of age.; Residential noise exposure was estimated for each infant based on spatially detailed modeled data. Adjusted multivariable linear regression models were used to estimate the association between noise exposure and the concentration of nine glucocorticoid metabolites measured in urine of 165 infants from a prospective birth cohort in Bern, Switzerland. Noise exposure (Lden, dB) was categorized into tertiles: low (reference), medium and high.; Indications of a positive association were found between high road traffic noise and cortisol (% change relative to the reference: 12.1% [95% confidence interval: -10.3, 40.1%]) and cortisone (22.6% [-1.8, 53.0%]), but just the latter was borderline significant. Borderline significant associations were also found between downstream metabolites and higher road traffic noise levels; associations were found to be both positive (i.e. for β-cortolone (51.5% [-0.9, 131.5%])) and negative (i.e. for α-cortolone (-18.3% [-33.6, 0.6%]) and tetrahydrocortisol (-23.7% [-42.8, 1.9%])).; Our findings suggest a potential association between exposure to higher road traffic noise levels and changes in glucocorticoid metabolism in early postnatal life. A possible physiological relevance and associations with short- and long-term adverse health effects in a larger study population need to be further investigated

    Pollen exposure is associated with risk of respiratory symptoms during the first year of life.

    Get PDF
    BACKGROUND Pollen exposure is associated with respiratory symptoms in children and adults. However, the association of pollen exposure with respiratory symptoms during infancy, a particularly vulnerable period, remains unclear. We examined whether pollen exposure is associated with respiratory symptoms in infants and if maternal atopy, infant's sex or air pollution modify this association. METHODS We investigated 14,874 observations from 401 healthy infants of a prospective birth cohort. The association between pollen exposure and respiratory symptoms, assessed in weekly telephone interviews, was evaluated using generalized additive mixed models (GAMM). Effect modification by maternal atopy, infant's sex and air pollution (NO2 , PM2.5 ) was assessed with interaction terms. RESULTS Per infant 37±2 (mean±SD) respiratory symptom scores were assessed during the analysis period (January through September). Pollen exposure was associated with increased respiratory symptoms during the daytime (RR [95% CI] per 10% pollen/m3 : combined 1.006 [1.002, 1.009]; tree 1.005 [1.002, 1.008]; grass 1.009 [1.000, 1.23]) and nighttime (combined 1.003 [0.999, 1.007]; tree 1.003 [0.999, 1.007]; grass 1.014 [1.004, 1.024]). While there was no effect modification by maternal atopy and infant's sex, a complex crossover interaction between combined pollen and PM2.5 was found (p-Value 0.002). CONCLUSION Even as early as during the first year of life, pollen exposure was associated with an increased risk of respiratory symptoms, independent of maternal atopy and infant's sex. Because infancy is a particularly vulnerable period for lung development, the identified adverse effect of pollen exposure may be relevant for the evolvement of chronic childhood asthma

    Exposure to moderate air pollution and associations with lung function at school-age: A birth cohort study

    Get PDF
    Adverse effects of higher air pollution levels before and after birth on subsequent lung function are often reported in the literature. We assessed whether low-to-moderate levels of air pollution during preschool-age impact upon lung function at school-age.; In a prospective birth cohort of 304 healthy term-born infants, 232 (79%) completed lung function at follow-up at six years. Using spatial-temporal models, levels of individual air pollution (nitrogen dioxide (NO; 2; ) and ozone (O; 3; ), particulate matter with a diameter <10 μm (PM; 10; )) were estimated for the time windows pregnancy, first up to the sixth year of life separately, and birth until follow-up at six years. Time window means were compared to World Health Organization (WHO) guideline limits. Associations of exposure windows with spirometry and body plethysmography indices were analyzed using regression models, adjusting for potential confounders. For subgroup analysis, air pollution exposure was categorized into quartiles (four groups of 52 children).; Mean NO; 2; level from birth until follow-up was [mean (range)] [11.8 (4.9 to 35.9 μg/m; 3; )], which is almost 4-times lower than the WHO suggested limit of 40 μg/m; 3; . In the whole population, increased air pollution levels from birth until follow-up were associated with reduced lung function at six years. In the subgroup analysis, the 52 children exposed to NO; 2; levels from the highest quartile during pregnancy, the first and second years of life and from birth until follow-up, had a significant decrease in forced expiratory volume in 1 s (FEV; 1; ). Per interquartile range increase of NO; 2; , FEV; 1; decreased by [z-score change (95% confidence interval)] [-1.07 (-1.67 to -0.47)], [-1.02 (-1.66 to -0.39)], [-0.51 (-0.86 to -0.17)] and [-0.80 (-1.33 to -0.27)], respectively. Air pollution exposure during pregnancy and childhood resulted in a non-significant decrease in lung volume at six years, as assessed by functional residual capacity measured by body plethysmography (FRC; pleth; ).; Our results suggest that exposure to higher NO; 2; levels, which are still much lower than WHO guideline limits, especially during the sensitive period of early lung development, may be associated with reduced lung function at school-age. These findings support the concept of age and dose-dependent pollution effects on lung function in healthy school-aged children and underline the importance of pollution reduction measures

    Dynamics of respiratory symptoms during infancy and associations with wheezing at school age

    Get PDF
    Children with frequent respiratory symptoms in infancy have an increased risk for later wheezing, but the association with symptom dynamics is unknown. We developed an observer-independent method to characterise symptom dynamics and tested their association with subsequent respiratory morbidity. In this birth-cohort of healthy neonates, we prospectively assessed weekly respiratory symptoms during infancy, resulting in a time series of 52 symptom scores. For each infant, we calculated the transition probability between two consecutive symptom scores. We used these transition probabilities to construct a Markov matrix, which characterised symptom dynamics quantitatively using an entropy parameter. Using this parameter, we determined phenotypes by hierarchical clustering. We then studied the association between phenotypes and wheezing at 6 years. In 322 children with complete data for symptom scores during infancy (16 864 observations), we identified three dynamic phenotypes. Compared to the low-risk phenotype, the high-risk phenotype, defined by the highest entropy parameter, was associated with an increased risk of wheezing (odds ratio (OR) 3.01, 95% CI 1.15-7.88) at 6 years. In this phenotype, infants were more often male (64%) and had been exposed to environmental tobacco smoke (31%). In addition, more infants had siblings (67%) and attended childcare (38%). We describe a novel method to objectively characterise dynamics of respiratory symptoms in infancy, which helps identify abnormal clinical susceptibility and recovery patterns of infant airways associated with persistent wheezing

    Associations of air pollution and greenness with the nasal microbiota of healthy infants: A longitudinal study.

    Get PDF
    BACKGROUND Air pollution and greenness are associated with short- and long-term respiratory health in children but the underlying mechanisms are only scarcely investigated. The nasal microbiota during the first year of life has been shown to be associated with respiratory tract infections and asthma development. Thus, an interplay between greenness, air pollution and the early nasal microbiota may contribute to short- and long-term respiratory health. We aimed to examine associations between fine particulate matter (PM2.5), nitrogen dioxide (NO2) and greenness with the nasal microbiota of healthy infants during the first year of life in a European context with low-to-moderate air pollution levels. METHODS Microbiota characterization was performed using 16 S rRNA pyrosequencing of 846 nasal swabs collected fortnightly from 47 healthy infants of the prospective Basel-Bern Infant Lung Development (BILD) cohort. We investigated the association of satellite-based greenness and an 8-day-average exposure to air pollution (PM2.5, NO2) with the nasal microbiota during the first year of life. Exposures were individually estimated with novel spatial-temporal models incorporating satellite data. Generalized additive mixed models adjusted for known confounders and considering the autoregressive correlation structure of the data were used for analysis. RESULTS Mean (SD) PM2.5 level was 17.1 (3.8 μg/m3) and mean (SD) NO2 level was 19.7 (7.9 μg/m3). Increased PM2.5 and increased NO2 were associated with reduced within-subject Ružička dissimilarity (PM2.5: per 1 μg/m3 -0.004, 95% CI -0.008, -0.001; NO2: per 1 μg/m3 -0.004, 95% CI -0.007, -0.001). Whole microbial community comparison with nonmetric multidimensional scaling revealed distinct microbiota profiles for different PM2.5 exposure levels. Increased NO2 was additionally associated with reduced abundance of Corynebacteriaceae (per 1 μg/m3: -0.027, 95% CI -0.053, -0.001). No associations were found between greenness and the nasal microbiota. CONCLUSION Air pollution was associated with Ružička dissimilarity and relative abundance of Corynebacteriaceae. This suggests that even low-to-moderate exposure to air pollution may impact the nasal microbiota during the first year of life. Our results will be useful for future studies assessing the clinical relevance of air-pollution-induced alterations of the nasal microbiota with subsequent respiratory disease development

    Variability of Tidal Breathing Parameters in Preterm Infants and Associations with Respiratory Morbidity during Infancy: A Cohort Study

    No full text
    To test whether low variability of tidal volume (V; T; ) and capnographic indices are predictive of subsequent respiratory morbidity in preterm infants.; In a birth cohort of 133 preterm infants, lung function was performed at 44 weeks postmenstrual age. Associations between the coefficient of variation (CV) of V; T; (CV; VT; ) and of expired CO; 2; volume per breath (CV; VE,CO2; ) with rehospitalization, wheeze, and inhalation therapy during infancy were assessed using logistic regression. Area under the curve (AUC) analysis was used to assess whether outcome prediction using bronchopulmonary dysplasia (BPD) classification was enhanced by CV; VT; or CV; VE,CO2; .; For each IQR decrease in CV; VT; (range, 4%-35%) and CV; VE; ,; CO2; (range, 5%-40%), the OR for rehospitalization increased by 2.25 (95% CI, 1.21-4.20) and 2.31 (95% CI, 1.20-4.45), respectively. The predictive value of BPD for rehospitalization was improved when CV; VT; or CV; VE,CO2; was added to the model, with the AUC increasing from 0.56 to 0.66 in both models. No association was found for the other outcomes.; Compared with BPD classification alone, including near-term variability of tidal breathing parameters improves the prediction of rehospitalization in infancy. These findings may inform parent counseling and monitoring strategies in preterm infants

    Lower exhaled nitric oxide in infants with Cystic Fibrosis compared to healthy controls.

    No full text
    Exhaled nitric oxide (FE &lt;sub&gt;NO&lt;/sub&gt; ) is a well-known, non-invasive airway biomarker. In patients with Cystic Fibrosis (CF) FE &lt;sub&gt;NO&lt;/sub&gt; is decreased. To understand if reduced FE &lt;sub&gt;NO&lt;/sub&gt; is primary related to Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) dysfunction or an epiphenomenon of chronic inflammation, we measured FE &lt;sub&gt;NO&lt;/sub&gt; in 34 infants with CF prior to clinical symptoms and in 68 healthy controls. FE &lt;sub&gt;NO&lt;/sub&gt; was lower in CF compared to controls (p=0.0006) and the effect was more pronounced in CF infants without residual CFTR function (p&lt;0.0001). This suggests that FE &lt;sub&gt;NO&lt;/sub&gt; is reduced in CF early in life, possibly associated with underlying CFTR dysfunction

    Elevated lung clearance index in infants with cystic fibrosis shortly after birth.

    No full text
    It is not known at what age lung function impairment may arise in children with cystic fibrosis (CF). We assessed lung function shortly after birth in infants with CF diagnosed by newborn screening.We performed infant lung function measurements in a prospective cohort of infants with CF and healthy controls. We assessed lung clearance index (LCI), functional residual capacity (FRC) and tidal breathing parameters. The primary outcome was prevalence and severity of abnormal lung function (±1.64 z-scores) in CF.We enrolled 53 infants with CF (mean age 7.8 weeks) and 57 controls (mean age 5.2 weeks). Compared to controls, LCI and FRC were elevated (mean difference 0.30, 95% CI 0.02-0.60; p=0.034 and 14.5 mL, 95% CI 7.7-21.3 mL; p&lt;0.001, respectively), while ratio of time to peak tidal expiratory flow to expiratory time was decreased in infants with CF. In 22 (41.5%) infants with CF, either LCI or FRC exceeded 1.64 z-scores; three infants had both elevated LCI and FRC.Shortly after birth, abnormal lung function is prevalent in CF infants. Ventilation inhomogeneity or hyperinflation may serve as noninvasive markers to monitor CF lung disease and specific treatment effects, and could thus be used as outcome parameters for future intervention studies in this age group

    Effect of breastfeeding duration on lung function, respiratory symptoms and allergic diseases in school-age children.

    Get PDF
    BACKGROUND A positive effect of breastfeeding on lung function has been demonstrated in cohorts of children with asthma or risk for asthma. We assessed the impact of breastfeeding on lung function and symptoms at the age of 6 years in an unselected, healthy birth cohort. METHODS We prospectively studied healthy term infants from the Bern-Basel Infant Lung Development (BILD) cohort from birth up to 6 years. Any breastfeeding was assessed by weekly phone calls during the first year of life. Risk factors (eg, smoking exposure, parental history of allergic conditions, and education) were obtained using standardized questionnaires. The primary outcomes were lung function parameters measured at 6 years of age by spirometry forced expiratory volume in 1 second, body plethysmography (functional residual capacity [FRCpleth ], the total lung capacity [TLCpleth ], and the effective respiratory airway resistance [Reff ]) and fractional exhaled nitric oxide (FeNO). Secondary outcomes included ever wheeze (between birth and 6 years), wheeze in the past 12 months, asthma, presence of allergic conditions, atopic dermatitis, rhinitis, and positive skin prick test at the age of 6 years. RESULTS In 377 children the mean breastfeeding duration was 36 weeks (SD 14.4). We found no association of breastfeeding duration with obstructive or restrictive lung function and FeNO. After adjustment for confounders, we found no associations of breastfeeding duration with respiratory symptoms or the presence of allergic conditions. CONCLUSION This study found no evidence of an association between breastfeeding and comprehensive lung function in unselected healthy children with long-term breastfeeding. Our findings do not support the hypothesis that the duration of breastfeeding has a direct impact on lung function in a healthy population with low asthmatic risk
    corecore